养生之道网导读:费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费马提出。下面我们一起来看看费马大定理的证明过程是怎样的。
费马大定理的证明过程
费马大定理的证明过程如下:a = d (n/2),b = h (n/2),c = p(n/2);那么a 2+b 2 = c 2可以写成d n+h n = p n,n=***当n = 1时,d+h=p,d,h和p可以是任何整数。
证明过程(第1部分)。如果a,b,c都是大于0的不同整数,并且m是大于1的整数,如果a m+b m = c m+d m+e m具有相同的幂关系,那么在a,b,c,d,e增加比率之后,相同的幂关系仍然成立。
证明:在原公式中a m+b m = c m+d m+e m的定理中,增率是n,n,n>1。
get:(na)m+(nb)m =(NC)m+(nd)m+(ne)m
原来的公式是:n m (a m+b m) = n m (c m+d m+e m)
两边去掉n m后,得到原始公式。
因此,在同侧的功率和差分公式之间有一个递增的比值计算规则,在增值后,它仍然是同侧的功率。
2.如果a、b和c是不同的整数,并且m+b = c m关系成立,其中b > 1,b不是a和c的相同幂,当a、b和c逐年增加时,b仍然不是a和c的相同幂。
证明:取定理a的原始公式m+b = c m
当氮、氮、氮的增加率大于1时,我们得到:(na) m+n MB = (NC) m
原来的公式是:n m (a m+b) = n mc m
两边去掉n m后,得到原始公式。
因为b不能转换成a和c的幂,所以n^mb不能转换成a和c的幂。
因此,等式关系在不是同一个平方的幂的项一起增加后仍然有效。
其中,相同功率的数量项在比例增加后仍为相同功率,不同功率的数量项在比例增加后仍为不同功率。