您当前的位置:首页 > 生肖 > 生肖蛇

脂肪烃的定义(脂肪烃的定义包括脂环烃吗)

时间:2023-12-29 09:44:06 作者:陈情匿旧酒 来源:互联网

本文目录一览:

高中化学:《选修5》知识点大全

有机化学知识点归纳(一)

一、有机物的结构与性质

1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。

2、常见的各类有机物的官能团,结构特点及主要化学性质

(1)烷烃

A) 官能团:无 ;通式:CnH2n+2;代表物:CH4

B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C原子的四个价键也都如此。

C) 化学性质:

(2)烯烃:

A) 官能团:

;通式:CnH2n(n≥2);代表物:H2C=CH2

B) 结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。

C) 化学性质:

(3)炔烃:

A) 官能团:—C≡C— ;通式:CnH2n—2(n≥2);代表物:HC≡CH

B) 结构特点:碳碳叁键与单键间的键角为180°。两个叁键碳原子与其所连接的两个原子在同一条直线上。

(4)苯及苯的同系物:

A) 通式:CnH2n—6(n≥6);代表物:

B)结构特点:苯分子中键角为120°,平面正六边形结构,6个C原子和6个H原子共平面。

C)化学性质:

①取代反应(与液溴、HNO3、H2SO4等)

(5)醇类:

A) 官能团:—OH(醇羟基); 代表物:CH3CH2OH、HOCH2CH2OH

B) 结构特点:羟基取代链烃分子(或脂环烃分子、苯环侧链上)的氢原子而得到的产物。结构与相应的烃类似。

C) 化学性质:

(与官能团直接相连的碳原子称为α碳原子,与α碳原子相邻的碳原子称为β碳原子,依次类推。与α碳原子、β碳原子、……相连的氢原子分别称为α氢原子、β氢原子、……)

④酯化反应(跟羧酸或含氧无机酸)

(6)醛酮

B) 结构特点:醛基或羰基碳原子伸出的各键所成键角为120°,该碳原子跟其相连接的各原子在同一平面上。

C) 化学性质:

(7)羧酸

3、常见糖类、蛋白质和油脂的结构和性质

(1)单糖

A) 代表物:葡萄糖、果糖(C6H12O6)

B) 结构特点:葡萄糖为多羟基醛、果糖为多羟基酮

C) 化学性质:①葡萄糖类似醛类,能发生银镜反应、费林反应等;②具有多元醇的化学性质。

(2)二糖

A) 代表物:蔗糖、麦芽糖(C12H22O11)

B) 结构特点:蔗糖含有一个葡萄糖单元和一个果糖单元,没有醛基;麦芽糖含有两个葡萄糖单元,有醛基。

C) 化学性质:

①蔗糖没有还原性;麦芽糖有还原性。

②水解反应

(3)多糖

A) 代表物:淀粉、纤维素 [ (C6H10O5)n ]

B) 结构特点:由多个葡萄糖单元构成的天然高分子化合物。淀粉所含的葡萄糖单元比纤维素的少。

C) 化学性质:

①淀粉遇碘变蓝。

②水解反应(最终产物均为葡萄糖)

(4)蛋白质

A) 结构特点:由多种不同的氨基酸缩聚而成的高分子化合物。结构中含有羧基和氨基。

B) 化学性质:

①两性:分子中存在氨基和羧基,所以具有两性。

②盐析:蛋白质溶液具有胶体的性质,加入铵盐或轻金属盐浓溶液能发生盐析。盐析是可逆的,采用多次盐析可分离和提纯蛋白质(胶体的性质)

③变性:蛋白质在热、酸、碱、重金属盐、酒精、甲醛、紫外线等作用下会发生性质改变而凝结,称为变性。变性是不可逆的,高温消毒、灭菌、重金属盐中毒都属变性。

④颜色反应:蛋白质遇到浓硝酸时呈黄色。

⑤灼烧产生烧焦羽毛气味。

⑥在酸、碱或酶的作用下水解最终生成多种α—氨基酸。

(5)油脂

A)组成:油脂是高级脂肪酸和甘油生成的酯。常温下呈液态的称为油,呈固态的称为脂,统称油脂。天然油脂属于混合物,不属于高分子化合物。

D) 化学性质:

①氢化:油脂分子中不饱和烃基上加氢。如油酸甘油酯氢化可得到硬脂酸甘油酯。

②水解:类似酯类水解。酸性水解可用于制取高级脂肪酸和甘油。碱性水解又叫作皂化反应(生成高级脂肪酸钠),皂化后通过盐析(加入食盐)使肥皂析出(上层)。

5、重要有机化学反应的反应机理

二、有机化学反应类型

1、取代反应

指有机物分子中的某些原子或原子团被其他原子或原子团取代的反应。

常见的取代反应:

⑴烃(主要是烷烃和芳香烃)的卤代反应;

⑵芳香烃的硝化反应;

⑶醇与氢卤酸的反应、醇的羟基氢原子被置换的反应;

⑷酯类(包括油脂)的水解反应;

⑸酸酐、糖类、蛋白质的水解反应。

2、加成反应

指试剂与不饱和化合物分子结合使不饱和化合物的不饱和程度降低或生成饱和化合物的反应。

常见的加成反应:

⑴烯烃、炔烃、芳香族化合物、醛、酮等物质都能与氢气发生加成反应(也叫加氢反应、氢化或还原反应);

⑵烯烃、炔烃、芳香族化合物与卤素的加成反应;

⑶烯烃、炔烃与水、卤化氢等的加成反应。

3、聚合反应

指由相对分子质量小的小分子互相结合成相对分子质量大的高分子的反应。参加聚合反应的小分子叫作单体,聚合后生成的大分子叫作聚合物。

常见的聚合反应:

加聚反应:指由不饱和的相对分子质量小的小分子结合成相对分子质量大的高分子的反应。

较常见的加聚反应:

三、有机化学计算

1、有机物化学式的确定

(1)确定有机物的式量的方法

①根据标准状况下气体的密度ρ,求算该气体的式量:M = 22.4ρ(标准状况)

②根据气体A对气体B的相对密度D,求算气体A的式量:MA = DMB

③求混合物的平均式量:M = m(混总)/n(混总)

④根据化学反应方程式计算烃的式量。

⑤应用原子个数较少的元素的质量分数,在假设它们的个数为1、2、3时,求出式量。

(2)确定化学式的方法

①根据式量和最简式确定有机物的分子式。

②根据式量,计算一个分子中各元素的原子个数,确定有机物的分子式。

③当能够确定有机物的类别时。可以根据有机物的通式,求算n值,确定分子式。

④根据混合物的平均式量,推算混合物中有机物的分子式。

(3)确定有机物化学式的一般途径

(4)有关烃的混合物计算的几条规律

①若平均式量小于26,则一定有CH4

②平均分子组成中,l < n(C) < 2,则一定有CH4。

③平均分子组成中,2 < n(H) < 4,则一定有C2H2。

2、有机物燃烧规律及其运用

四、其他

最简式相同的有机物:

(1)CH:C2H2、C4H4(乙烯基乙炔)、C6H6(苯、棱晶烷、盆烯)、C8H8(立方烷、苯乙烯)

(2)CH2:烯烃和环烯烃

(3)CH2O:甲醛、乙酸、甲酸甲酯、葡萄糖

(4)CnH2nO:饱和一元醛(或饱和一元酮)与二倍于其碳原子数的饱和一元羧酸或酯。如:乙醛(C2H4O)与丁酸及异构体(C4H8O2)

(5)炔烃(或二烯烃)与三倍于其碳原子数的苯及苯的同系物。如丙炔(C3H4)与丙苯(C9H12)

有机化学知识点归纳(二)

一、同系物

结构相似,在分子组成上相差一个或若干个CH2原子团的物质物质。

同系物的判断要点:

1、通式相同,但通式相同不一定是同系物。

2、组成元素种类必须相同

3、结构相似指具有相似的原子连接方式,相同的官能团类别和数目。结构相似不一定完全相同,如CH3CH2CH3和(CH3)4C,前者无支链,后者有支链仍为同系物。

4、在分子组成上必须相差一个或几个CH2原子团,但通式相同组成上相差一个或几个CH2原子团不一定是同系物,如CH3CH2Br和CH3CH2CH2Cl都是卤代烃,且组成相差一个CH2原子团,但不是同系物。

5、同分异构体之间不是同系物。

二、同分异构体

化合物具有相同的分子式,但具有不同结构的现象叫做同分异构现象。具有同分异构现象的化合物互称同分异构体。

1、同分异构体的种类:

⑴ 碳链异构:指碳原子之间连接成不同的链状或环状结构而造成的异构。如C5H12有三种同分异构体,即正戊烷、异戊烷和新戊烷。

⑵位置异构:指官能团或取代基在在碳链上的位置不同而造成的异构。如1—丁烯与2—丁烯、1—丙醇与2—丙醇、邻二甲苯与间二甲苯及对二甲苯。

⑶异类异构:指官能团不同而造成的异构,也叫官能团异构。如1—丁炔与1,3—丁二烯、丙烯与环丙烷、乙醇与甲醚、丙醛与丙酮、乙酸与甲酸甲酯、葡萄糖与果糖、蔗糖与麦芽糖等。

⑷ 其他异构方式:如顺反异构、对映异构(也叫做镜像异构或手性异构)等,在中学阶段的信息题中屡有涉及。

各类有机物异构体情况:

⑴ CnH2n+2:只能是烷烃,而且只有碳链异构。如CH3(CH2)3CH3、CH3CH(CH3)CH2CH3、C(CH3)4

⑵ CnH2n:单烯烃、环烷烃。如CH2=CHCH2CH3、

CH3CH=CHCH3、CH2=C(CH3)2、

⑶ CnH2n-2:炔烃、二烯烃。如:CH≡CCH2CH3、CH3C≡CCH3、CH2=CHCH=CH2

⑷CnH2n-6:芳香烃(苯及其同系物)。如:

⑸ CnH2n+2O:饱和脂肪醇、醚。如:CH3CH2CH2OH、CH3CH(OH)CH3、CH3OCH2CH­3

⑹ CnH2nO:醛、酮、环醚、环醇、烯基醇。如:CH3CH2CHO、CH3COCH3、CH2=CHCH2OH、

⑺CnH2nO2:羧酸、酯、羟醛、羟基酮。如:CH3CH2COOH、CH3COOCH3、HCOOCH2CH3、HOCH2CH2CHO、CH3CH(OH)CHO、CH3COCH2OH

⑻ CnH2n+1NO2:硝基烷、氨基酸。如:CH3CH2NO2、

、H2NCH2COOH

⑼ Cn(H2O)m:糖类。如:

C6H12O6:CH2OH(CHOH)4CHO,CH2OH(CHOH)3COCH2OH

C12H22O11:蔗糖、麦芽糖。

2、同分异构体的书写规律:

⑴ 烷烃(只可能存在碳链异构)的书写规律:

主链由长到短,支链由整到散,位置由心到边,排布由对到邻到间。

⑵具有官能团的化合物如烯烃、炔烃、醇、酮等,它们具有碳链异构、官能团位置异构、异类异构,书写按顺序考虑。一般情况是碳链异构→官能团位置异构→异类异构。

⑶ 芳香族化合物:二元取代物的取代基在苯环上的相对位置具有邻、间、对三种。

3、判断同分异构体的常见方法:

⑴ 记忆法:

① 碳原子数目1~5的烷烃异构体数目:甲烷、乙烷和丙烷均无异构体,丁烷有两种异构体,戊烷有三种异构体。

② 碳原子数目1~4的一价烷基:甲基一种(—CH3),乙基一种(—CH2CH3)、丙基两种(—CH2CH­2CH3、—CH(CH3)2)、丁基四种(—CH2CH2CH2CH3、 、—CH2CH(CH3)2、—C(CH3)3)

③ 一价苯基一种、二价苯基三种(邻、间、对三种)。

⑵ 基团连接法:将有机物看成由基团连接而成,由基团的异构数目可推断有机物的异构体数目。

如:丁基有四种,丁醇(看作丁基与羟基连接而成)也有四种,戊醛、戊酸(分别看作丁基跟 醛基、羧基连接而成)也分别有四种。

⑶ 等同转换法:将有机物分子中的不同原子或基团进行等同转换。

如:乙烷分子有6个H原子,若有一个H原子被Cl原子取代所得一氯乙烷只有一种结构,那么五氯乙烷有多少种?假设把五氯乙烷分子中的Cl原子转换为H原子,而H原子转换为Cl原子,其情况跟一氯乙烷完全相同,故五氯乙烷也有一种结构。同样,二氯乙烷有两种结构,四氯乙烷也有两种结构。

⑷等效氢法:等效氢指在有机物分子中处于相同位置的氢原子。等效氢任一原子若被相同取代基取代所得产物都属于同一物质。

其判断方法有:

① 同一碳原子上连接的氢原子等效。

② 同一碳原子上连接的—CH3中氢原子等效。如:新戊烷中的四个甲基连接于同一个碳原子上,故新戊烷分子中的12个氢原子等效。

③同一分子中处于镜面对称(或轴对称)位置的氢原子等效。如: 分子中的18个氢原子等效。

三、有机物的系统命名法

1、烷烃的系统命名法

⑴ 定主链:就长不就短。选择分子中最长碳链作主链(烷烃的名称由主链的碳原子数决定)

⑵ 找支链:就近不就远。从离取代基最近的一端编号。

⑶ 命名:

① 就多不就少。若有两条碳链等长,以含取代基多的为主链。

②就简不就繁。若在离两端等距离的位置同时出现不同的取代基时,简单的取代基优先编号(若为相同的取代基,则从哪端编号能使取代基位置编号之和最小,就从哪一端编起)。

③先写取代基名称,后写烷烃的名称;取代基的排列顺序从简单到复杂;相同的取代基合并以汉字数字标明数目;取代基的位置以主链碳原子的阿拉伯数字编号标明写在表示取代基数目的汉字之前,位置编号之间以“,”相隔,阿拉伯数字与汉字之间以“—”相连。

⑷ 烷烃命名书写的格式:

2、含有官能团的化合物的命名

⑴定母体:根据化合物分子中的官能团确定母体。如:含碳碳双键的化合物,以烯为母体,化合物的最后名称为“某烯”;含醇羟基、醛基、羧基的化合物分别以醇、醛、酸为母体;苯的同系物以苯为母体命名。

⑵ 定主链:以含有尽可能多官能团的最长碳链为主链。

⑶ 命名:官能团编号最小化。其他规则与烷烃相似。

如:

,叫作:2,3—二甲基—2—丁醇

,叫作:2,3—二甲基—2—乙基丁醛

四、有机物的物理性质

1、状态:

固态:饱和高级脂肪酸、脂肪、葡萄糖、果糖、蔗糖、麦芽糖、淀粉、维生素、醋酸(16.6℃以下);

气态:C4以下的烷、烯、炔烃、甲醛、一氯甲烷、新戊烷;

液态:

油状:乙酸乙酯、油酸;

粘稠状:石油、乙二醇、丙三醇。

2、气味:

无味:甲烷、乙炔(常因混有PH3、H2S和AsH3而带有臭味);

稍有气味:乙烯;

特殊气味:甲醛、乙醛、甲酸和乙酸;

香味:乙醇、低级酯;

3、颜色:

白色:葡萄糖、多糖

黑色或深棕色:石油

4、密度:

比水轻:苯、液态烃、一氯代烃、乙醇、乙醛、低级酯、汽油;

比水重:溴苯、乙二醇、丙三醇、CCl4。

5、挥发性:

乙醇、乙醛、乙酸。

6、水溶性:

不溶:高级脂肪酸、酯、溴苯、甲烷、乙烯、苯及同系物、石油、CCl4;

易溶:甲醛、乙酸、乙二醇;

与水混溶:乙醇、乙醛、甲酸、丙三醇。

五、最简式相同的有机物

1、CH:C2H2、C6H6(苯、棱晶烷、盆烯)、C8H8(立方烷、苯乙烯);

2、CH2:烯烃和环烷烃;

3、CH2O:甲醛、乙酸、甲酸甲酯、葡萄糖;

4、CnH2nO:饱和一元醛(或饱和一元酮)与二倍于其碳原子数的饱和一元羧酸或酯;如乙醛(C2H4O)与丁酸及异构体(C4H8O2)

5、炔烃(或二烯烃)与三倍于其碳原子数的苯及苯的同系物。

如:丙炔(C3H4)与丙苯(C9H12)

六、能与溴水发生化学反应而使溴水褪色或变色的物质

1、有机物:

⑴ 不饱和烃(烯烃、炔烃、二烯烃等)

⑵ 不饱和烃的衍生物(烯醇、烯醛、烯酸、烯酯、油酸、油酸酯等)

⑶ 石油产品(裂化气、裂解气、裂化汽油等)

⑷ 含醛基的化合物(醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖等)

⑸ 天然橡胶(聚异戊二烯)

2、无机物:

⑴ -2价的S(硫化氢及硫化物)

⑵ + 4价的S(二氧化硫、亚硫酸及亚硫酸盐)

⑶ + 2价的Fe

6FeSO4+ 3Br2= 2Fe2(SO4)3+ 2FeBr3

6FeCl2+ 3Br2= 4FeCl3+ 2FeBr3

2FeI2+ 3Br2= 2FeBr3+ 2I2

⑷ Zn、Mg等单质如

⑸ -1价的I(氢碘酸及碘化物)变色

⑹ NaOH等强碱、Na2CO3和AgNO3等盐

Br2+ H2O= HBr + HBrO

2HBr + Na2CO3= 2NaBr + CO2↑+H2O

HBrO + Na2CO3= NaBrO + NaHCO3

七、能萃取溴而使溴水褪色的物质

上层变无色的(ρ>1):卤代烃(CCl4、氯仿、溴苯等)、CS2等;

下层变无色的(ρ<1):直馏汽油、煤焦油、苯及苯的同系物、低级酯、液态环烷烃、液态饱和烃(如己烷等)等

八、能使酸性高锰酸钾溶液褪色的物质

1、有机物:

⑴ 不饱和烃(烯烃、炔烃、二烯烃等)

⑵ 不饱和烃的衍生物(烯醇、烯醛、烯酸、烯酯、油酸、油酸酯等)

⑶ 石油产品(裂化气、裂解气、裂化汽油等)

⑷ 醇类物质(乙醇等)

⑸ 含醛基的化合物(醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖等)

⑹ 天然橡胶(聚异戊二烯)

⑺ 苯的同系物

2、无机物:

⑴ 氢卤酸及卤化物(氢溴酸、氢碘酸、浓盐酸、溴化物、碘化物)

⑵ + 2价的Fe(亚铁盐及氢氧化亚铁)

⑶ -2价的S(硫化氢及硫化物)

⑷ + 4价的S(二氧化硫、亚硫酸及亚硫酸盐)

⑸ 双氧水(H2O2)

医学生物化学重点总结

第二章 蛋白质的结构和功能

第一节 蛋白质分子组成

一、组成元素:

N为特征性元素,蛋白质的含氮量平均为16%.-----测生物样品蛋白质含量:样品含氮量×6.25

二、氨基酸

1.是蛋白质的基本组成单位,除脯氨酸外属L-α-氨基酸,除了甘氨酸其他氨基酸的α-碳原子都是手性碳原子。2.分类:(1)非极性疏水性氨基酸:甘、丙、缬、亮、异亮、苯、脯,甲硫。(2)极性中性氨基酸:色、丝、酪、半胱、苏、天冬酰胺、谷氨酰胺。(3)酸性氨基酸:天冬氨酸Asp、谷氨酸Glu。(4)(重)碱性氨基酸:赖氨酸Lys、精氨酸Arg、组氨酸His。

三、理化性质

1.两性解离:两性电解质,兼性离子静电荷 +1 0 -1

PH〈PI PH=PI PH〉PI

阳离子 兼性离子 阴离子 等电点:PI=1/2(pK1+pK2)

2.紫外吸收性质:多数蛋白质含色氨酸、酪氨酸(芳香族),最大吸收峰都在280nm。

3.茚三酮反应:茚三酮水合物与氨基酸发生氧化缩合反应,成紫蓝色的化合物,此化合物最大吸收峰为570nm波长。此反应可作为氨基酸定量分析方法。

四、蛋白质分类:单纯蛋白、缀合蛋白(脂、糖、核、金属pr)

五、蛋白质分子结构

1.肽:氨基酸通过肽键连接构成的分子肽 肽键:两个氨基酸α氨基羧基之间缩合的化学键(—CO—NH—)

2.二肽:两分子氨基酸借一分子的氨基与另一分子的羧基脱去一分子的水缩合成

3.残基:肽链中的氨基酸分子因脱水缩合而残缺,故被称为氨基酸残基。

4.天然存在的活性肽:

(1)谷胱甘肽GSH:谷,半胱,甘氨酸组成的三肽

①具有还原性,保护机体内蛋白质或酶分子免遭氧化,使蛋白质或酶处于活性状态。②在谷胱甘肽过氧化物酶催化下,GSH可还原细胞内产生的过氧化氢成为水,同时,GSH被氧化成氧化性GSSG,在谷胱甘肽还原酶作用下,被还原为GSH③GSH的硫基具有噬核特性,能与外源性的噬电子毒物(如致癌物,药物等)结合,从而阻断,这些化合物与DNA,RNA或蛋白质结合,以保护机体(解毒)

(2)多肽类激素及神经肽

①促甲状腺激素释放激素TRH②神经肽:P物质(10肽) 脑啡肽(5肽) 强啡肽(17肽)

第二节 蛋白质的分子结构

一级

二级

三级

四级

定义

蛋白质中氨基酸的数目及排列顺序

蛋白质分子中多肽链骨架中原子的局部空间排列,不涉及侧链空间排布

二级结构进一步盘曲折叠成具有一定规律的三维空间结构

亚基与亚基间呈特定的三维空间排布,并以非共价键相连接

形式

a-螺旋(上升一圈3.6个,螺距0.54nm,直径0.5nm)β-折叠(正向0.6,反,0.7)

β-转角,无规卷曲,超二级卷曲

结构域:蛋白质构象定的区域。是由多肽链上相邻的超二级结构的紧密相联)。形成的结构区域)

亚基(完整的三级结构)

肽键(主)

二硫键(次)

氢键

疏水作用,离子氢键,范德华力

疏水作用,盐键和氢键

意义

是蛋白质空间构象和特异性生物活性的基础,但不是决定空间构象的唯一因素

由一级结构决定,发挥特殊生理功能

短距离效应

相对分子质量大的蛋白质常分为多个结构域执行不同功能

长距离效应

超二级结构:即模体(motif),指在多肽链内顺序上相互临近的二级结构常常在空间折叠中靠近,彼此相互作用,形成规则的二级结构聚合体。

蛋白质的分类:1.根据组分:(1)单纯蛋白质 (2)缀合蛋白:脂、糖、核、金属pr(非蛋白部分为结合蛋白的辅基)

2.形状和空间构象:

(1)纤维状:长轴和短轴之比大于10,不溶于水,韧性——支架和外保护

(2)球状:水溶性较好,结构更复杂——酶和调控蛋白

第三节 蛋白质结构与功能的关系

一、一级结构是空间构象的基础

1.空间构象遭破坏的核糖核酸酶只要一级结构未被破坏,就可能恢复到原来的三级结构,功能依然存在。

2.一级结构是功能的基础。不同种属来源pr相似的一级结构(序列同源现象)具有相似的功能→同源蛋白质。

3.一级结构改变与分子病

分子病:蛋白质分子发生变异所导致的疾病,为基因突变导致。镰刀形贫血:谷氨酸 → 缬氨酸

二、蛋白质空间结构与功能的关系

1.蛋白质的功能依赖于特定的空间结构

2.蛋白质在不改变一级结构的前提下,通过变构(配体物质与蛋白质非共价键结合改变构象)可以改变活性

三、蛋白质空间的结构改变与疾病

1.因蛋白质折叠错误或折叠不能导致构象变化引起的疾病,成为蛋白质构象病

2.朊病毒:查不到任何核酸,对各种理化作用有很强抵抗力,传染性极强的蛋白质颗粒。

(1)细胞型(正常型):表达于脊椎动物细胞表面,存在于a-螺旋。

(2)瘙痒性(致病型):是PrPc异构体,可胁迫PrPc转化为PrPSc,实现自我复制,并产生病理效应。

四、蛋白质的理化性质:

两性解离

①两端氨基和羧基+侧链某些基因解离②若溶质pH<pI蛋白质带正电荷

③若溶液pH>pI蛋白质带负电荷④若溶液pH=pI,为兼性离子,电荷为0

等电点

体内蛋白质的各种PI不同,多接近5.0

紫外吸收

含肽键220nm和芳香族氨基酸280nm处吸光度的测定,常用于蛋白质的定量

双缩脲反应

呈紫色反应,用于检测蛋白质的水解程度

透析

蛋白质是生物大分子不易透过半透膜,通过半透膜纯化含小分子杂质的蛋白质

变性

破坏共价键和二硫键,若一级结构未被破坏,轻微变性后可因去除变性因素而恢复活性(复性)

沉淀

除去蛋白质的水化膜并中和其电荷,可发生沉淀

凝固

蛋白质被强酸强碱变性后,仍能溶于强酸或强碱溶液中,若将强酸或强碱溶液的PH值调至等电点,变性蛋白质结成不溶絮状物,称结絮。若再加热紫状物变得更为坚固,不易再溶于强酸强碱中。(凝固)

变性

变性的蛋白质不一定沉淀,沉淀的蛋白质不一定变性,但变性的蛋白质易沉淀,凝固的蛋白质均已变性,而且不再溶解。

五.蛋白质的分离与纯化:

1.提取:破碎组织和细胞,将蛋白质溶解于溶液中的过程称为蛋白质的提取。

2.纯化:将溶液中的蛋白质相互分离而取得单一蛋白质组分的过程。

3.改变蛋白质溶解度使其沉淀的方法:

(1)盐析:用高浓度的中性盐将蛋白质从溶液中析出。Eg:硫酸铵 硫酸钠 氯化钠。原理:夺取蛋白质周围的水化膜,破坏其稳定性。(2)加入有机溶剂 Eg:丙酮 正丁醇 乙醇 甲醇。原理:降低溶液的介电常数,使蛋白质相互吸引。

四 补充

一、氨基酸分类

都含有共轭双键→紫外光吸收性质

1.带脂肪烃侧链的氨基酸:丙,缬,亮,异亮

2.含芳香环:苯丙芳香族:酪,色

3.含硫:甲硫氨酸 ④含疏基:半胱氨酸

4.亚氨基酸:脯氨酸 ⑥含羟基:丝 苏

5.含酰胺基:谷氨酰胺,天冬酰胺 ⑧含羧基(酸性带负电):天冬氨酸,谷氨酸

二、肽

1.多肽链两端:自由氨基(氨基末端,N端),羧基(羧基末端,C端)。2.多肽命名:N端→C端3.多肽中肽链4个原子(C,O,N,H)和相邻两个a碳原子等6个原子位于同一酰胺平面,构成肽单元(Peptide Unit)。4.抗生素肽:抑制,杀死细菌的多肽

第三章 核酸的结构和功能

核酸是一类含磷的生物大分子化合物,携带和传递遗传信息,为生命的最基本物质之一。根据组成不同,可分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。

第一节 核酸的化学组成及一级结构

核酸分子的元素组成为C,H,O,N和P,基本单位为核苷酸。(也称单核苷酸)

一、核苷酸

核苷酸完全水解可释放出等摩尔量的含氮碱基,戊糖(脱氧戊糖)和磷酸。

1.碱基

(1)存在于DNA分子中:A,T,C,G;存在于RNA中:A,U,C,G。

(2)此外,核酸还含有一些含量很少的碱基,种类很多,大多数为甲基化碱基。

2.戊糖(1)核糖构成RNA,脱氧核糖构成DNA;(2)RNA分子较DNA分子更易发生水解,因此不如DNA稳定。

3.核苷(1)碱基和核糖(脱氧核糖)通过糖苷键连接成核苷(脱氧核苷)。(2)核 苷:AR,GR,UR,CR

(3)脱氧核苷:Dar,dGR, dTR, dCR.

4.单核苷酸

(1)核苷(脱氧核苷)和磷酸酯键连接形成核苷酸(脱氧核苷酸)

①核苷酸:AMP,GMP,UMP,CMP②脱氧核苷酸。dAMP,dGMP,dTMP,dCMP.。③重要的核苷酸衍生物

④多磷酸核苷酸:NTP(三核酸核苷),NDPC(二磷酸核苷⑤环化核苷酸:cAMP(3’,5’-环腺甘酸)cGMP(3’,5’-环鸟苷酸)

二、核酸的一级结构

1.定义:核酸中核苷酸的排列顺序。由于核苷酸间的差异主要是碱基的不同,所以也称为碱基序列。

2.核苷酸之间以3´,5´磷酸二酯键连接形成多核苷酸链,且多核苷酸链是有方向性的。

书写方法:左端标出5’末端,右侧为3’末端例如:5’ACTGCT3’

第二节 DNA的空间结构和功能

一、DNA的二级结构——双螺旋结构模型

DNA双螺旋结构的特点1.DNA分子由两条反向平行但走向相反的脱氧多核苷酸链组成,两链以一脱氧核苷酸-磷酸,为骨架,以右手螺旋方式绕同一公共轴盘螺旋,直径为2nm,形成大沟和小沟相间,碱基垂直螺旋轴居双螺旋内侧,与对侧碱基形成氢键配对(互补配对形式:A=T,C=G),相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。2.DNA双螺旋结构的稳定主要由互补碱基对之间的氢键和碱基堆积力来维持。氢键主持双链横向稳定性,碱基堆积力维持双链纵向稳定性。3.DNA双螺旋结构的多样性DNA双螺旋结构是DNA分子在水性环境和生理环境下最稳定的结构,但当改变溶液的离子浓度或相对温度时,DNA结构会发生改变。

二、DNA的超螺旋结构及其在染色质中的组装

1.DNA超双螺旋结构(1)超螺旋结构:DNA双螺旋链再盘绕成超螺旋结构;(2)正超螺旋:盘绕方向与DNA双螺旋方向相同(2)负超螺旋:盘绕方向与DNA双螺旋方向相反 2.原核生物DNA是环状超螺旋结构3.真核生物DNA在核内的组装

真核生物染色体由DNA和蛋白质构成,其基本单位是核小体,

(1)核心颗粒:由长146bp的双螺旋DNA以超螺旋方式缠绕组蛋白八聚休1.8圈组成。(2)连接区:由连接区DNA和组蛋白H1组成。(3)连接区DNA:连接相邻两个核心颗粒。(4)组蛋白①组蛋白种类:H1,H2A,H2B,H3,H4②组蛋白八聚体(核心组蛋白)由各2分子H2A,H2B,H3,H4组成八聚体(5)真核生物染色体DNA组装不同层次的结。(6)染色体是由DNA和蛋白质构成的不同层次缠绕线和螺线管结构

三、DNA的功能

1.DNA的基本功能是以基因的形式荷载遗传信息,并作为基因复制和转录的模板。它是生命遗传的物质基础,也是个体生命活的信息基础。2.基因就是指在染色体上占有一定位置的遗传的基本单位或单元。3.基因组是指来自一个遗传体系的一整套遗传信息。

4.此外,真核细胞还有线粒体和叶绿体,分别含有线粒体DNA和叶绿体DNA,属于核外遗传物质。

第三节 RNA的功能和结构

RNA的种类、分布和功能

细胞核和胞液

线粒体

功能

核蛋白体RNA

rRNA

mt rRNA

核蛋白体组分

信使RNA

mRNA

mt rRNA

蛋白质合成模板

核内不均一RNA

HnRNA

成熟mRNA的前体

核内小RNA

SnRNA

参与HnRNA的剪接、转运

核仁小RNA

SnoRNA

rRNA的加工、修饰

胞浆小RNA

ScRNA/TSL-RNA

蛋白质肉质网定位合成的信号识别体组分

转运RNA

tRNA

mt tRNA

转运氨基酸

一、信使RNA的结构与功能

mRNA的结构特点

1.大多数真核mRNA的5’末端均在转录后加上一个甲基鸟苷,同时第一个核苷酸的C2’也是甲基化,形成帽子结构。

2.大多数真核mRNA的3’末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾

5’m7Gppp———AUG————————UAG——————AAUAAA———poly(A)3’

3.帽子结构和多聚A尾的功能

(1)mRNA核内向胞质的移位(2)mRNA的稳定性维系(3)翻译超始的调控

4.mRNA的功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成的氨基酸排列顺序

二、转运RNA的结构和功能

1.tRNA分子中含有较多的稀有碱基,含10-20%稀有碱基,如DHU,3’末端为-CCA-OH,5’末端大多数为G

2.tRNA二级结构——三叶草氨基酸臂,DHU环,反密码环,额外环,TψC环3.tRNA的三级结构——倒L形

4.tRNA的功能:搬运氨基酸到核糖体和识别密码子,参与蛋白质的翻译

三、核蛋白休RNA的结构和功能

1.rRNA与核糖体蛋白共同构成核蛋白体或称为核糖体,核糖体均由易于解聚的大小两个亚基组成。

2.rRNA的功能:参与组成核蛋白体,作为蛋白质生物合成的场所。3.rRNA的种类:(根据沉降系数)

真核生物 原核生物

5srRNA 5srRNA

28srRNA 23srRNA

5.8srRNA 16srRNA

18srRNA

原核生物(大肠杆菌为例)

真核生物(以小鼠肝为全例)

小亚基

30S

40S

rRNA

16S

1542个核苷酸

18S

1874个核苷酸

蛋白质

21种

占总量的40%

33种

占总量的50%

大亚基

50S

60S

rRNA

23S

2940个核苷酸

28S

4718个核苷酸

5S

120个核苷酸

5.8S

160个核苷酸

5S

120个核苷酸

蛋白质

36种

占总量的30%

49%

占总量的35%

第四节 核酸的理化性质

一、核酸的一般理化性质

1.核酸分子中有末端磷酸和许多连接核苷的磷酸残基,为多元酸,具有较强的酸性。

2.核酸分子中还有含氮碱基上的碱性基团,故为两性电解质,各种核酸分子大小及所带电荷不同,电泳和离子法来分离不同的核酸。

二、DNA的变性

1.定义:在某些理化因素作用下,DNA双链解开成两条单链的过程。变性并不涉及核苷酸共键(磷酸二脂键)的断裂。

2.方法:过量酸、碱、加热、变性试剂如尿素、酰胺以及某些有机溶剂如乙醇、丙酮等。3.变性后其它理化性质变化:

DNA变性的本质是双链间氢键的断裂。变性引起紫外吸收值的改变4.增色效应:DNA变性时其溶液A260增高的现象

5.Tm:变性是在一个相当窄的温度范围内完成,在这一范围内,紫外光吸收值达到最大值的50%时的温度温度称为DNA的解链温度,又称熔解温度,或熔点。

6.Tm值与下列因素有关:

(1)DNA的均一性:DNA的均一性较高,那么DNA链各部分的氢键断裂所需的能值较接近,Tm值范围较窄,所之亦然,由于可见Tm值可作为衡量DNA样品均一性的指标。

(2)C-G碱基对含量:G-C碱基对为3对氢键,而A-T碱基对只有2对氢键,所以破坏G-C间氢键较A-T间氢键需要更多的能量。因此Tm值大小与G+C含量成正比,也可通过Tm值推算出DNA碱基的百分组成。

X%(G+C)=(Tm-69.3)*2.44

(3)介质中离子强度:离子强度低,DNA的Tm值较低。

三、DNA的复性与分子杂交

1.DNA复性定义:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象,这一现象称为复性。(1、足够的盐浓度——消除磷酸基的静电斥力,2、足够高的温度——破坏无规则的链内氢键)2.热变性的DNA经缓慢冷却后即可复性,这一过程称为退火。3.减色效应:DNA复性时,其溶液A260降低。4.核酸分子杂交:在DNA变性后的复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件(温度及离子强度)下,就可以在不同的分子间形成杂化双链。5.这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成,这种现象称为核酸分子杂交。6.核酸分子杂交的应用

第四章 酶

一、 酶的概念:酶是指由活细胞产生的具有催化作用的蛋白质。

1、命名:①习惯命名:分解脂肪的酶→脂肪酶→据其催化的底物 催化脱氢反应酶→脱氢酶→据其催化的反应类型命名

②系统命名

2、分类:①氧化还原酶类 ②转移酶类 ③水解酶类 ④裂解酶类 ⑤异构酶类 ⑥合成酶类(或连接酶类)

3、化学本质:据化学本质将酶分两类,即:①蛋白脂类的酶 ②核酸类的酶

二、酶的分子结构与功能

1、分子组成:单纯酶和结合酶。酶蛋白:结合酶中的蛋白质部分。辅助因子:结合酶中的非蛋白质部分。

全酶:酶蛋白与辅助因子结合形成的复合物称全酶,只有全酶才有催化作用。

金属酶:金属离子如果与酶结合紧密,在提取的过程中不会丢失,这类酶称为金属酶。如:羧肽酶(含Zn2+)黄嘌呤氧化酶(含Mo2+)金属离子作用:①维持酶分子的构象;②传递电子;③在酶与底物间起桥梁作用;④中和阴离子降低反应的静电斥力。

根据辅助因子与酶蛋白结合的牢固程度不同将其分为辅基或辅酶。

注:①辅基大多为金属离子②一种酶蛋白只能与一种辅助因子结合,但是一种辅助因子可与不同酶蛋白结合。

单纯酶:仅含单纯酶:仅含α-氨基酸的蛋白质

分类

结合酶:蛋白质+非蛋白质部分(即辅酶分子)(即酶蛋白 )

酶蛋白——决定反应的特异性

小分子有机化学物 结合成复合物全酶(只有全美才具有催化作用)

辅酶因子——

金属离子

在酶促反应中

1、 维持酶分子的构象

2、 传递电子

3、 在酶与底物间起桥梁作用

4、 中和阴离子,降低反应的静斥力

辅酶:与蛋白质结合疏松

辅酶因子 参与酶活性中心的组成

辅基:与酶蛋白结合牢固

酶活性中心(active center):指酶分子中能与底物结合并催化底物转变为产物的特定的空间结构区域。

酶活性中心内 结合集团:结合底物和辅酶,使之成为复合物的必需基团

催化基团:影响底物中某些化学键的稳定性,催化底物转变成为产物

2、酶的活性中心

①概念:酶分子中与酶活性密切相关的化学基因称为必需基因,这些必需基因在一级结构上可能相距很远,必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这区域称为酶的活性中心或活性部位。

②分类:①酶活性中心内的必需基团:结合基因和催化基因 ②酶活性中心外的必需基团:组氨酸的咪唑基,丝氨酸的羟基等。

三、酶促反应的特点与机制

1、酶与催化剂相比较:

①共同点:A催化作用;B反应前后酶质与量不变;C不改变反应平衡常数

②不同点:A极高的催化效率B高度的特异性:1、绝对特异性 2、相对特异性 3、立体异构特异性 C可调节性

2、酶促反应的机制

①诱导契合假说酶:与底物相互接近时,其结构相互诱导、相互变形和相互适应,进而相互结合。这一过程称为酶-底物结合的诱导契合假说 。②邻近效应与定向排列:提高反应速率③多元催化:同一种酶常兼有酸、碱双重催化作用。④表面效应:

四、酶促反应动力学

影响酶促反应因素:酶浓度、底物浓度、pH、温度、抑制剂、激活剂等。

1、 底物浓度对反应速度的影响

①在酶量恒定的情况下,酶促反应的速度主要取决于底物的浓度

②在底物浓度较低时,反应速度随底物浓度的增加而上升,加大底物浓度,反应速度趋缓,底物浓度进一步增高,反应速度不再随底物浓度的增加而加快,达最大反应速度,此时酶的活性中心被底物饱和。

☆ 2、米-曼氏方程式

② 间产物学说:酶(E)与底物(S)形成酶—底物复合物(中间产物ES),此复合物再分解为产物(P)和游离的酶。

②米氏方程式:V= Vmax[S]。A米氏方程式Km值等于酶促反应速度为最大反应速度一半时的底物浓度。B、Km值↓酶对底物的亲和力↑。C、Km是酶的特征性常数之一,只与酶的结构,酶所催化的底物和反应环境如温度、PH、离子强度有关,与酶的浓度无关(同一底物,不同的酶有不同的Km值)。D、Vmax是酶完全被底物所饱和时的反应速度,与酶浓度成正比。

③km值和Vmax值的测定:

双倒数作图法

第一步: V=Vmax*[S]/(Km+[S])

两边同取倒数得

1/V=Km/(Vmax*[S])+1/Vmax

以1/V对1/[S]作图,纵轴截距=1/Vmax, 横轴截距=-1/km

Hanes作图法: [S]/V=Km/Vmax + [S]/Vmax

以[S]/V对[S]作图,纵轴截距=-km, 直线k=1/Vmax

3、 酶浓度对反应速度的影响

(当[S]>>km,酶可被底物饱和的情况下,反应速度与酶浓度成正比。当[S]>>E时,km忽略不计)

4、温度对反应速度的影响①温度升高,酶促反应速度升高②温度升高,可引起酶的变性失活。

最适温度:酶促反应速度最快时的环境温度称为酶促反应的最适温度。(酶的最适温度不是酶的特征性常数,与反应时间有关)注:临床应用:低温麻醉、低温保存菌种。

5、pH对反应速度的影响

①酶活性受其反应环境的PH影响,且不同的酶对不同的PH有不同要求。②最适pH :酶催化活性最大时的环境pH

③胃蛋白酶最适PH值是1.8;肝精氨酸酶是9.8;多数酶是中性(最适pH不是酶的特征性常数,受底物浓度,缓冲液种类与浓度,以及酶的纯度等因素影响)

6、抑制剂对酶促反应速度的影响

① 抑制剂:凡能使酶的催化活性下降而不引起酶蛋白变性的物质统称为酶的抑制剂。

② 抑制剂多与酶的活性中心内、外必需基因相结合,从而抑制酶的催化活性。

分类:

① 不可逆性抑制剂:以共价键与酶活性中心上的必需基因相结合,使酶失活,此种抑制剂不可用透析、超滤等方法去除。

② 可逆性抑制剂:抑制剂与酶以非共价键方式结合,使酶活性降低或消失,可采用透析、超滤的方法解除,是一种可逆性结合。

A. 竞争性抑制作用:与底物竞争酶的活性中心,从而阻碍酶与底物结合成中间复合物。(可逆的)比如:丙二酸与琥珀酸争琥珀酸脱氢酶,磺胺药物与对氨基苯甲酸竞争二氢叶酸合成酶)

B. Vmax不变,Km值↑

C. 非竞争性抑制作用:与酶活性中心外的必需基因结合,底物与抑制剂之间无竞争关系。

Vmax↓,Km值不变C.反竞争性抑制作用:抑制剂不与酶结合,反与酶和底物形成的中间产物(ES)结合,使中间产物ES的量下降。Vmax↓,Km值↓

7、激活剂对酶促反应速度的影响

① 激活剂:使酶从无活性变为有活性或使酶活性增加的物质。

② 酶的激活剂大多为金属离子,如:Mg+、K+、Mn2+等。

③ 必需激活剂:大多数金属离子激活剂对酶促反应是不可缺少的。非必需激活剂:激活剂不存在时,酶仍有一定的催化活性。

8、酶活性测定与酶活性单位

① 酶的活性指酶的催化化学反应能力,其衡量标准是酶促反应速度。

② 酶的比活力:比活力是表示酶纯度的较好指标。(每分钟催化1umol底物转化为产物所需的酶浓度)

五.酶的调节

1、酶活性调节

⑴酶原与酶原的激活

① 酶原:无活性的酶的前体。酶原的激活:由无活性的酶原变成有活性的酶的过程称酶原的激活

酶原的激活一般通过某些蛋白质酶的作用,水解一个或几个特定的肽键,致使蛋白质构象发生改变而使酶原具有活性,其实质是酶的活性中心形成或暴露的过程(其过程不可逆)

③ 生理意义:{

⑵变构酶(别构酶)

① 变构调节:酶分子活性中心外的某一部分可以与体内一些代谢物可逆地结合,使酶发生变构并改变其催化活性,这种调节酶活性的方式称为变构调节。

② 变构效应剂:引起变构效应的代谢物称为变构效应剂。

③ 变构效应剂引起酶活性的增强或减弱,分别称变构激活作用或变构抑制作用。

⑶酶的共价修饰调节

① 共价修饰(化学修饰):酶蛋白肽链上的一些基因可与某些化学基因发生可逆的共价结合,从而改变酶活性,这一过程称酶的共价修饰。

② 酶共价修饰包括:磷酸化与去磷酸化、乙酰化与去乙酰化、—SH—与—S—S—、甲基化与去甲基化、腺苷化与去腺苷化。

2.酶的调节

⑴酶蛋白合成的诱导与阻遏

① 酶蛋白的合成量主要 调节

② 诱导剂:能促进酶蛋白的基因转录,增加酶蛋白生物合成的物质为诱导剂(辅阻遏剂则相反)

⑵酶降解的调控

酶蛋白质降解途径{

3.同工酶

①同工酶:指催化相同的化学反应,而酶蛋白分子结构、理化性质、免疫学性质不同的一组酶。

②同工酶是由不同基团或等位基因编码的多肽链,或由同一基因转录生成的不同mRNA翻译的不同多肽链组成的蛋白质。翻译后经修饰生成的多分子形式不在同工酶之列。同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中

③乳酸脱氢酶是四聚体蛋白分为

H型(心肌型)M型(骨骼肌型)LD1(H4)、LD2(H3M)、LD3(H2M2)、LD4(HM3)、LD5(M4)

备注: 参与组成辅酶的维生素

转移基因

辅酶或辅基

所含维生素

氢原子

NAD+、NADP+FAN、FAD

尼克酰胺(维生素PP)维生素B2

醛基

TPP

维生素B1

酰基

辅酶A、硫辛酸

泛酸、硫辛酸

烷基

钴胺美辅酶类

维生素B12

CO2

生物素

生物素

氨基

磷酸吡哆醛

吡哆醛(维生素B6)

甲基等一碳单位

四氢叶酸

叶酸

第五章 维生素与微量元素

第一节 维生素

一、概论

1.维生素:是维护人体健康,促进生长发育,和维持细胞正常生理功能所必需的一类低相对分子质量有机化合物。

2.特点:

(1)日需量少,但大部分由食物供给。

(2)是重要的营养素,但不能供能,也不是细胞组织的结构成分。

(3)多数是构成某些酶的辅酶或辅基成分。

(4)长期缺乏会引起供能障碍或出现生理功能紊乱即维生素缺乏病。

二、脂溶性维生素

维生素

主要功能

活性形式

缺乏症

A

参与视黄醇合成,参与糖蛋白的合成,维持上皮结构的完整性,促进生长发育

11-顺视黄醛,视黄醛,视黄酸

夜盲症,干眼病,皮肤干燥

D

促进钙磷代谢,是1,25-(OH2)P3的前体

1,25-(OH2)P3

佝偻病,软骨病

E

重要的抗氧化剂,对抗氧自由基,促进血红素合成,维护生殖功能

生育酚

未发现

K

维持体内第II,VII,IX,X凝血因子在正常水平

2-甲基-1,4-茶醌

易出血

三、水溶性维生素

维生素

主要功能

活性形式

缺乏症

B1

转酮酶的辅酶,转酮基反应,抑制胆碱酯酶的活性

TPP

脚气病,末梢神经炎

B2

世称核黄素,黄素蛋白酶的辅酶,参与体内氧化体素

FMN,FAD

口角炎,舌炎,唇炎,炎

B6

氨基酸代谢中转氨酶,脱羧酶的辅酶,ALA合成酶的辅酶

磷酸吡哆醛,磷酸吡哆胺

未发现

B12

构成甲基转移酶的辅酶,参与甲基化,促进DNA的合成,促进红细胞合成

甲钴胺素,钴胺素

进行性脱髓鞘病

PP

烟酸,构成脱氢酶辅酶,参与生物氧化体系

NAD+,NADP+

癞皮病

C

水溶性抗氧化剂,促进胶原蛋白合成,参与芳香族氨基酸代谢,促进铁的吸收

抗环血酸

坏血病

维生素

主要功能

活性形式

缺乏症

泛酸

构成CoA及酰基载体蛋白ACP的成分,参与体内酰基转移

CoA,ACP

未发现

叶酸

以四氢叶酸形式参与一碳集团转运;与蛋白质核酸合成,红细胞白细胞的成熟有关

FH4

巨幼红细胞性贫血

生物素

几种羧化酶的辅酮,参与CO2的固定

羧化酶辅酮

脱屑性红皮病

1.维生素E又称生育酚,以a-生育酚在自然界分布最为广泛,且生物活性最强。

2.维生素C保护疏基作用:维生素C作为供氢体能使许多疏基分子上的疏基保持在还原状态,发挥其催化作用。正常成人每日维生素C的需要量是60mg。

第六章 生物氧化

第一节 构成ATP的氧化体系

一、呼吸链

1.概论

(1)定义:代谢物脱下的成对氢离子(2H)通过多种酶和辅酶所催化的连锁反应,逐步传递最终与氧结合成水。由于此过程与细胞呼吸有关,所以将此传递链称为呼吸链。(2)在呼吸链中,酶和辅酶按一定顺序排列在线粒体内膜上。(3)传递氢的酶或辅酶称之为递氢体。(4)传递电子的酶或辅酶称之为电子传递体。(5)无论递氢体还是电子传递体都起传递电子的作用,所以呼吸链又称电子传递链。

2.呼吸链的组成:

(1)烟酰胺腺嘌呤二核苷酸(NAD+)或称辅酶I(CoI)。

生理PH条件下,烟酰胺中的吡啶氮为五价氮,它能可逆地接受电子而成为三价氮,与氮对胃的氢键也较活泼,能可逆地加氢还原,故可视为递氢体。

NAD++2H ↔ NADP++H+

(2)黄素蛋白(FP)

有两种辅基:①黄素单核苷酸(FMN)②黄素腺嘌呤二核苷酸

FMN +2H FAD

氧化型 ( ) ↔ ( ) 还原型

FAD H2- FAD

(3)铁硫蛋白(Fe-S)

分子中含铁原子和硫原子,铁和无机硫原子和蛋白质多肽链上半胱氨酸残基的硫相结合。

Fe2+ ↔ Fe3+ + Fe 单电子传递

(4)泛醌(UQ)又称辅酶Q(CoQ)

脂溶性的苯醌类化合物,分子中带有一很长的侧链,由多个异戊二烯组成。

H++e H++e

泛醌 ↔ 泛醌H ↔ 二氢泛醌

(醌型或氧化型) (半醌型) (氢醌型或还原型)

(5)细胞色素类(Cyt)

位于线粒体内膜的电子传递体,辅基为铁卟啉。

作用:将电子从呼吸链传递到氧的专一酶。

(6)人体线粒体呼吸链复合酶:-

复合体

酶名称

多肽链数目

辅基

I

NADH-泛醌还原酶

43

FMN Fe-S

II

琥珀酸-泛醌还原酶

4

FAD Fe-S

III

泛醌-细胞色素C还原

11

铁卟啉 Fe-S

IV

细胞色素C氧化酶

13

铁卟啉 Cu

细胞色素C

1

铁卟啉

3.主要的呼吸链

(1)NADH氧化呼吸链:

①生物氧化中大多数脱氢酶如乳酸脱氢酶,苹果酸脱氢酶都是以NAD+为辅酶

②NADH氧化呼吸链的组成和作用

2H+

SH2 NAD+ UQ 2Cyt-Fe2+ 1/2O2

S NADH+H+ UQH2 2Cyt-Fe3+ O2 H2O

(2)琥珀酸氧化呼吸链(FADH2氧化呼吸链)呼吸酸脱氢酶催化脱下的2H经复合体II使CoQ形成CoQH2,再往下的传递与NADH氧化呼吸链相同。(琥珀酸脱氢酶,α鏻酸甘油脱氢酶,脂闲CoA脱氢酶)

琥珀酸 FAD(Fe-S) UQH2 2Cyt-Fe3+ O2

延胡索酸 FADH2(Fe-S) UQ 2Cyt-Fe2+ 1/2O2

2H+

二、氧化磷酸化

(1)定义:代谢氧化物脱氢经呼吸链传递给氧生成水的同时,释放能量使ADP磷酸化生成ATP,由于代谢物的氧化反应与ADP磷酸化反应耦联反应故称氧化磷酸化。

(2)氧化磷酸化是体内生成ATP的主要方式,另一种生成ATP的方式是底物水平磷酸化。

1.氧化磷酸化的耦联部位:

(1)P/0比值的测定:消耗1mol氧原子所需消耗的无机磷的摩尔数。

(2)自由能变化:

△Go’=-nF△Eo’

n=传递电子数;F为法拉第常数[96.5kJ/(mol·V)]

2. 氧化磷酸化的耦联机制

(1)化学渗透假说:电子经过呼吸链传递释放的能量可以将H+从线粒体内膜的基质侧弄到膜间隙,因此产生了电化学梯度,当质子顺浓度梯度经过ATP何梅F0回流,能生成ATP )

实验证明:递氢体和电子传递体在线粒体内膜上交替排列,复合体I、II、III如同线粒体内膜上的3个质子泵,均能将H+从线粒体基质泵到膜间隙。

(2)ATP合酶

①由亲水性F1和疏水性F0两部分组成

F1 :a3,β3 ,γ,δ,ε 功能:催化合成ATP

F0 :a,b2,C9~12亚基

②当H+浓度顺梯度经F0中a亚基和c亚基之间回流,γ亚基发生旋转。3个β亚基构象发生改变,以三种独立状态存在。

1)紧张状态T:与ATP紧密连接

2)松弛状态L:与ADP和无机磷结合

3)开放状态O:生成ATP释出

三、影响氧化磷酸化的因素

1.抑制剂

(1)呼吸链抑制剂:阻断呼吸链中某些部位电子传递。

CO、CN-、N3-及H2S抑制细胞色素C氧化酶,使电子不能结合氧。

此类抑制可使细胞内呼吸停止,导致人迅速死亡。

(2)解耦联剂:

①可使氧化磷酸化耦联过程脱离

②通道回流,而通过线粒体内膜中其他途径返回线粒体基质,从而破坏内膜两侧的侄子电化学梯度,使ATP的生成受到抑制,以电化学梯度储存的能量以热量形式释放。

(3)氧化磷酸化:

①寡酶素可以阻止质子从F0 通道回流,抑制ATP生成。

②由于此时线粒体内膜两侧质子电化学梯度增高,影响呼吸链质子泵的功能,继而抑制电子传递。

2.ADP的调节作用:正常计提的氧化磷酸化速率主要受ADP的调节成正比RCR,加入ADP后的耗氧量速率与仅有底物时的耗氧速率之比称为呼吸控制率(RCR)。

3.甲状腺激素

(1)甲状腺激素诱导细胞膜上Na+.K+-ATP酶的合成使ATP加速分解为ADP和Pi,ADP增多促进氧化磷酸化。

(2)甲状腺素(T3)还可使解偶联蛋白基因表达增加,引起耗氧量和产热量增加。

四、 ATP

1.在体内所有高能磷酸化合物中,以ATP末端的磷酸链最为重要。

2.为糖原,磷脂蛋白质合成时提供能量的UTP,CTP,GTP,一般不能从物质氧化的过程中直接生成,只能在核苷二磷酸激酶的催化下,从AT中获取~P。3.当体内ATP消耗过多时,ADP累积,在腺苷肠激酶催化下,由ADP转变成ATP被利用。

4.ATP还可将~P转移给肌的生成磷酸肌酸(CP),作为脑和肌中能量的一种储存形式。当机体消耗ATP过多而导致ADP增多时磷酸肌将~P转移给ADP生成ATP,供生理活动之用。

五、通过线粒体内膜的物质转运

1.胞质中NAPH的氧化:(1)a-磷酸甘油穿梭(2)苹果酸-天冬氨酸穿梭

第一节 呼吸链的概述

1.氢原子中含有电子,故递氢的同时必然递电子(递氢体也是递电子体)。但递电子体不一定是递氢体。

2.从呼吸链中可以分离得到4个有递电子功能的复合体:NADH-泛醌还原酶(复合体I),琥珀酸-泛醌还原酶(复合II),泛醌-细胞色素C还原酶(复合体III)和细胞色素C氧化酶(复合体IV)。CoQ和Cyt c 不包含在这些复合体中。

3.在呼吸链中含有FMN.FAD.Cyt类和Fe-S等,他们按一定顺序排列组成长短不同的两条呼吸链:NADH氧化呼吸链和琥珀酸氧化呼吸链,排列顺序是:

琥珀酸

FAD

(Fe-S)

NADH → FMN → CoQ → Cyt b → Cyt c1 → Cyt c → Cyt aa3 → 1/2O2

(Fe-S)

在NADH氧化呼吸链(由复合体I,III,IV组成)中,存在3个偶联部位(FMN→CoQ,Cyt b→Cyt c1,Cyt aa3→1/2 O2);而在琥珀酸氧化呼吸链(由复合体II,III,IV组成)中,含有2个偶联部位(Cyt b→Cyt c1,Cyt aa3→1/2 O2)。

第三节

ADP或ADP/ATP比率是调节氧化磷酸化的重要因素。机体利用ATP增多,ADP浓度增高,转运人线粒体后使氧化磷酸化速度加快。反之ADP不足,使氧化磷酸化速率减慢。

第四节

ATP是多种生理活动能量的直接提供者,体内能量的生成,转化,储存和利用,都以ATP为中心。

第五节

线粒体外生成的NADH不能直接进入线粒体经呼吸链氧化,需要借助穿梭系统才能使2H进入线粒体内。有a-磷酸甘油穿梭(脑与骨骼)和苹果酸-天冬氨酸(心与肝脏)穿梭两种转运制。其中通过a-磷酸甘油穿梭,2H氧化时能生成2分子ATP;经苹果酸-天冬氨酸穿梭系统将2H带入线粒体,氧化时能生成3分子ATP。

六 其他氧化体系

微粒体细胞色素P450(Cyt P450)加单氧酶使底物分子羟化。Cyt P450属于Cyt b类。加单氧酶有水生成,加双氧酶产物无水生成。其他氧化体系其特点是在氧化过程中不伴有偶联磷酸化,不能生成ATP。主要与体内代谢物、药物和毒物的生物转化有关。

第六章 糖代谢

糖是自然界一大类有机化合物,其化学式本质是多羟基醛或多羟基酮以及它们的衍生物。糖的基本结构式是(CH2O)n,故也称之为碳水化合物。糖类的生理功能有:1.作为体内主要的功能物质,1mol葡萄糖在体内完全氧化可释放2840KJ的能量。2.是人体组织结构的重要成分。3.核糖与脱氧核糖是体内合成核苷酸的原料。4.糖类可提供体内合成脂类和某些氨基酸的碳骨架。5.糖类是糖复合物的重要组成。糖在体内分解代谢的主要途径有4条:1.糖的无氧分解(糖酵解)。2.糖的有氧氧化。3.磷酸戊糖途径。4.糖醛酸途径。

第1节、血糖及其调节

一、血液中的单糖(主要是葡萄糖)称为血糖,是糖在体内的运输形式。

血糖的来源和去路。来源:1、食物中的糖类被消化吸收。 2、肝糖原分解 3、糖异生去路:1、无氧酵解,有氧氧化 2、戊糖旁路 3、转化伟脂肪、氨基酸 4、合成糖原

二、血糖水平的调节

1、肝脏的调节作用2、激素对血糖浓度的调节作用

A、胰岛素:胰岛素是体内唯一的降糖激素。 1、促进肌、脂肪组织将葡萄糖转运入细胞2、加速糖原合成、抑制糖原分解3、加速糖的有氧氧化4、抑制肝内糖异生 5、抑制脂肪组织中对激素敏感性酯酶,加速脂肪动员

B、胰高血糖素:是体内主要的升糖激素 1、抑制糖原合成,促进肝糖原分解2、抑制糖酵解,促进糖异生 3、激活脂肪组织中对激素敏感性酯酶,加速脂肪动员

C、糖皮质激素:1、促进肌蛋白分解,加强糖异生 2、抑制肝外组织摄取和利用葡萄糖 3、对促进脂肪动员的激素有允许作用

D、肾上腺素:加速糖原分解(肝糖原 葡萄糖;肌糖原乳酸葡萄糖)应激状态下发挥作用。

第2节、糖酵解

糖的无氧分解是指体内组织在无氧情况下,细胞液中的葡萄糖分解生成乳酸和少量ATP的过程,也称为糖酵解。

一、 糖酵解的反映过程:

1、磷酸己糖的生成

(1) 葡萄糖磷酸化生成6-磷酸葡萄糖。(催化此反应的酶是己糖激酶(HK))

意义:糖磷酸化后容易参与代谢反应;磷酸化后的糖含有带负电荷的磷酸集团而不能通过细胞质膜,因此是细胞的一种保糖机制。

(2)6-磷酸葡萄糖异构化转变为6-磷酸果糖

(3)6-磷酸丙糖的生成

由醛缩酶催化,1,6-二磷酸果糖为磷酸二羟基丙酮和3-磷酸甘油醛两个磷酸丙糖分子。

此反应可逆,其逆反应是一个醛缩反应,故称催化反应的酶为醛缩酶或醇醛缩合酶。

2、磷酸丙糖的生成

由醛缩酶催化,1,6-二磷酸果糖成为磷酸二羟丙酮和3-磷酸甘油醛两个磷酸丙糖分子。

此反应可逆,其逆反应是一个醛缩反应,故称催化此反应的酶称为醛缩酶或醇醛缩合酶。

3、3-磷酸甘油醛转变为丙酮酸并释放能量

(1)3-磷酸甘油醛氧化为1,3-二磷酸甘油酸(在NAD+和HO4存在下);

(2)1,3-二磷酸甘油酸将磷酸基转给ADP形成了3-磷酸甘油酸和ATP;

(3)3-磷酸甘油酸在磷酸甘油变位酶的催化下转变为2-磷酸甘油酸。

食物淀粉的消化主要在小肠进行。

葡萄糖磷酸化生成6-磷酸葡萄糖是糖酵解过程中第一个限速步骤,催化反应的酶为己糖激酶。

6-磷酸果糖再磷酸化生成1,6-磷酸果糖,是糖酵解的第二个限速步骤,催化反应的酶是6-磷酸果糖激酶-1。

糖酵解途径中第一次生成ATP的反应是1,3-二磷酸甘油酸将磷酸基转给ADP形成3-磷酸甘油酸和ATP。

糖酵解过程中三个关键酶:己糖激酶(HK),6-磷酸果糖激酶-1(PFK-1),丙酮酸激酶(PK)。由这三种酶催化的反应不可逆。

(4)2—磷酸甘油酸脱水生成磷酸烯醇式丙酮酸(5)磷酸烯醇式丙酮酸转变为烯醇式丙酮酸(由丙酮酸激酶(PK)催化)(6)烯醇式丙酮酸自发转变为丙酮酸

(四)丙酮酸还原为乳酸

乳酸脱氢酶催化丙酮酸还原为乳酸。乳酸脱氢酶的辅酶是NAD+或NADH+H+。

糖酵解的全部反应过程见书P89页

二、 糖酵解的调节

1、6—磷酸果糖激酶—1

6—磷酸果糖激酶—1是糖酵解途径流量最重要的调节点。2,6—二磷酸果糖是6—磷酸果糖激酶—1最强的变构激活剂,与AMP一起消除ATP、柠檬酸的抑制作用。(ATP、柠檬酸是该酶的变构抑制剂)

2、丙酮酸激酶

是糖酵解第二重要的调节点,1,6—二磷酸果糖是其变构激活剂(ATP抑制)

3、葡萄糖激酶或己糖激酶(长链脂先CoA对其有变构抑制作用)

第3节 糖的有氧氧化

葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O,并释放大量能量的反应过程,称为糖的有氧氧化。

一、 有氧氧化的反应过程

1、丙酮酸生成2、丙酮酸氧化脱羧生成乙酰CoA(反应式见课本91页)3、乙酰CoA进入三羧酸循环彻底氧化

三羧酸循环(见课本93页图)三羧酸循环(TAC):又称柠檬酸循环,是由乙酰CoA与草酰乙酸缩合成含3个羧基的柠檬酸开始,经过一连串的代谢反应,使1分子乙酰基彻底氧化,再生成草酰乙酸而形成的一个循环。

(1) 柠檬酸的形成(由柠檬酸合酶催化)

柠檬酸异构化生成异柠檬酸

(2) 异柠檬酸氧化脱羧生成α-酮戊二酸(由异柠檬酸脱氢酶催化)

(3) α-酮戊二酸氧化脱羧生成琥珀酰CoA(由α-酮戊二酸脱氢酶复合体催化)

(4) 琥珀酰CoA转变为琥珀酸

(5) 琥珀酸氧化脱氢生成延胡索酸(由琥珀酸脱氢酶催化,该酶是TAC中唯一存在线粒体内膜上的酶)

(6) 延胡索酸被水化生成苹果酸

(7) 苹果酸脱氢生成草酰乙酸

TAC的关键酶:柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体,由这三种酶催化的反应不可逆,所以TAC不可逆。 异柠檬酸脱氢酶是主要的限速酶。

1分子乙酰CoA进入TAC氧化分解,总共可生成12分子ATP。

琥珀酰CoA转变为琥珀酸是TAC中唯一以底物水平磷酸化方式生成ATP的步骤。

TAC生理意义:

1、 是三大营养物质氧化分解的共同途径。

2、 三大营养物质代谢联系的枢纽。

3、 为其他物质代谢提供小分子前体。

4、 为呼吸链提供H+和e.

添补反应:TAC的中间代谢物,理论上可重复使用,但实际上某些成分经常由于参与体内各种相应的合成途径而被移去,所以必须通过各种途径加以补充。TAC中草酰乙酸的补充最重要。

三.有养氧化的调节

(一)丙酮酸脱氢酶复合物的调节。可以通过变构效应和共价修饰两种方式进行快速调节

(二)三羧酸循环的速率和流量的调控

第四节 磷酸戊糖途径

磷酸戊糖途径的反应过程

(一)脱氧氧化(二)异构化反应(三)基因转移

磷酸戊糖途径的调节

高糖饮食的影响

NADPH+H+的影响

组织细胞对NADPH+H+和一磷酸核糖相对需要量的调节

该图径的中间代谢物的影响

磷酸戊糖途径的主要特点是能生成磷酸核糖,CO2和NADPH+H+但不能直接生成ATP

磷酸戊糖途径主要的调节点是6-磷酸葡萄糖脱氢酶,该酶的快速调节主要受NADPH/NADP+比值的影响

一、磷酸戊糖途径的反应过程

1、反应部位:胞液2、反应步骤

二、磷酸戊糖途径的生理意义

1、磷酸核糖使体内合成核苷酸和核酸的必要原料2、NADPH+H离子具有多方面重要生理功用

(1)使体内多种重要生理活性物质合成代谢过程中的供氧体(2)是谷胱甘肽还原酶的辅酶(3)参与肝脏的生物转化作用

(4)可参与体内中性粒细胞和巨噬细胞在吞噬细菌后产生超氧阴离子自由基,所以与这些细胞的杀菌作用有关

三、磷酸戊糖途径的特点:

1、大量的NADPH生成。总反应式为:3×6-磷酸葡萄糖+6NADP+ →2×6-磷酸果糖+3-磷酸甘油醛+6NADPH+

6氢离子+3 CO2。2、与糖酵解关系密切:其起始物为6-磷酸葡萄糖,产物6-磷酸果糖,3-磷酸甘油酸又可回到糖酵解里去。

3、磷酸戊糖途径主要是产生磷酸核糖、NADPH和CO2,而不是产生ATP.

四、磷酸戊糖途径的调节

限速酶为6-磷酸葡萄糖脱氢酶,主要受NADPH∕NADP+ 的调节。

高糖饮食时肝中6-磷酸葡萄糖含量增多,以提供脂酸合成所需的NADPH+(H+)。NADPH+(H+)对6-磷酸葡萄糖脱氢酶有明显的抑制作用。磷酸戊糖途径与糖有氧氧化和糖酵解途径之间存在着相互制约的关系。

五、磷酸戊糖途径的生理意义

1、磷酸戊糖途径的主要意义是产生5-磷酸核糖和NADPH+(H+)为核酸的生物合成提供核糖2、 提供NADPH+(H+)作为供氢体参与各种代谢反应。NADPH+(H+)维持谷胱甘酸的还原状态NADPH+(H+)参与肝脏的生物转化作用NADPH+(H+)与体内中性粒细胞和巨噬细胞的杀菌作用有关。

第五节 糖异生

由非糖化合物(如乳酸、甘油、丙酮酸、生糖氨基酸等)转变为葡萄糖或糖原的过程称为糖异生。

一、糖异生途径

1、基本上与糖酵解的反应过程相反。糖酵解过程中由3个关键酶所催化的反应是不可逆反应,成为糖异生的“障碍”。参与克服“障碍”的4个酶是糖异生途径的限速酶。葡萄糖-6-磷酸酶可催化多种磷酸酯加水分解,主要存在于肝肾中。1,6-二磷酸酶(果糖二磷酸酶)丙酮酸羧化酶,存在于细胞的线粒体。磷酸烯醇式丙酮酸羧激酶,在GTP参与下,可催化草酰乙酸变为磷酸烯醇式丙酮酸。2、糖异生途径中的关键物质——草酰乙酸不能自由通过线粒体内膜。

二、糖异生的调节

糖异生的调节总体上和糖酵解的调节相反。

1、糖异生原料的影响 血浆中乳酸、甘油和生糖氨基酸的浓度增加时,糖异生增强。①饥饿时——蛋白分解加速,氨基酸增多,糖异生增强。②大量运动——乳酸堆积,糖异生增强。2、ATP/AMP比值 ATP/AMP比值升高,抑制糖酵解,促进糖异生。

3、2,6-二磷酸果糖 是肝内调节糖的分解或糖异生反应方向的主要信号。4、丙酮酸羧化酶5、激素调节 肾上腺素、糖皮质激素。胰高血糖素等使糖异生增强,胰岛素使糖异生减弱。

三、糖异生的生理意义

1、保持血糖浓度稳定2、有利于体内乳酸的利用3、补充肝糖原:糖异生是肝补充或恢复糖原的重要途径4、调节酸碱平衡:长期饥饿时,肾糖异生增强,有利于维持酸碱平衡。

四、乳酸循环

1在缺氧情况下,肌肉中糖酵解增强生成大量乳酸,通过细胞膜弥散入血并运送至肝,通过糖异生作用合成肝糖原或葡萄糖,葡萄糖再释入血液被肌肉摄取,如此构成一个循环,称为乳酸循环。2肌肉中生成的乳酸,即不能异生成糖,更不能释出葡萄糖。

3乳酸循环的生理意义:①避免乳酸损失,防止因乳酸堆积引起酸中毒;②乳酸再利用。乳酸循环式耗能过程,2分子乳酸异生成葡萄糖,消耗6ATP.

第六节、糖原的合成与分解

人体摄入的糖类大部分转变为脂肪(三酰甘油),只有一小部分以糖原形式贮存。

糖原主要存在于肝和肌肉中,肌糖元主要供肌收缩的急需,肝糖原则是血糖的重要来源。

1、糖原的合成代谢

葡萄糖(还有少量果糖和半乳糖)在肝脏、肌肉等组织中可以合成糖原。

合成过程 分4步

①葡萄糖+ATP(葡萄糖激酶)G6P+ADP

②G6P(磷酸葡萄糖变位酶)G1P

③G1P+UTP (UDPG焦磷酸化酶) UDPG+焦磷酶

④UDPG+糖原n(糖原合酶)糖原n+1+UDP

糖原含酶的作用只能使糖链不断延长,而不能形成新分支。

糖原合成时,每增加1个葡萄糖基需消耗2分子ATP。

2、糖原的分解代谢

糖原分解是指糖原分解为葡萄糖的过程

磷酸化酶催化糖原非还原端的葡萄糖基磷酸化。生成1─磷酸葡萄糖。反应不消耗ATP。1─磷酸葡萄糖转变为6─磷酸葡萄糖:催化酶是葡萄糖变位酶。6─磷酸葡萄糖+H2O(葡萄糖-6-磷酸酶)葡萄糖+Pi

3、糖原合成与分解的调节

糖原合成和糖原分解途径的限速酶分别是糖原合酶和磷酸化酶,这两种酶的快速调节有变构调节和化学修饰两种方式。

共价修饰调节。变构调节糖原累积症:是一类遗传性代谢病,特点是体内某些组织器官中有大量糖原堆积。

第八章 脂类代谢

脂类 脂肪(fat):三酯甘油或称甘油三酯,主要功能是储能和供能。

类酯(adupoid):包括磷脂、糖脂、胆固醇及胆固醇酯,可参与生物膜的结构组成,细胞识别及信息传递,转变成活性类固醇化合物,调节机体代谢。

第一节脂类的生理功能

1.储能和供能 2.维持生物膜结构完整与功能正常3.保护内脏与维持体温 4.参与细胞信息传递5.转变成多种重要的生理活性物质参与机体代谢调节

第二节 脂类的消化和吸收

一、 脂类的消化

1.部位:小肠上段2.所需条件及酶: 胆汁酸、胰脂酶,辅脂酶,磷脂酶A2,胆固醇酯酶

二、脂类的吸收 部位:十二指肠下段及空肠上段

脂类消化吸收的特点

1.小肠上段是脂类物质的主要消化场所,十二指肠下段及空肠上段是脂类物质消化产物的主要吸收场所2.脂类物质的消化吸收需要胆汁酸盐帮助乳化与分散3.脂类物质的消化需要多种消化酶协同作用4.消化产物经被动扩散方式吸收进入肠粘膜细胞5.被吸收的消化产物经单酰甘油途径在小肠粘膜细胞中重新合成三酰甘油6.被吸收的肠类物质在血液中的运输需要载脂蛋白帮助

第三节、血脂

血浆中的脂类统称为血脂

血浆脂蛋白中的蛋白质部分称为载脂蛋白。血浆脂蛋白种类很多,通常用超离心法或电泳法可分成4种:

1、乳糜微粒(CM) 转运外源脂肪,被脂肪酶水解后成为乳糜残留物。 2、极低密度脂蛋白(前β脂蛋白,VLDL) 转运内源脂肪,水解生成中间密度脂蛋白(IDL或LDL1),失去载脂蛋白后转变为低密度脂蛋白。 3、低密度脂蛋白(β-α脂蛋白,LDL) 转运胆固醇到肝脏。β脂蛋白高易患动脉粥样硬化。 4、高密度脂蛋白(α-脂蛋白,HDL) 转运磷脂和胆固醇,由肝脏和小肠合成,可激活脂肪酶,有清除血中胆固醇的作用。LDL/HDL称冠心病指数,正常值为2.0±0.7。 自由脂肪酸与清蛋白结合,构成极高密度脂蛋白而转运。

第四节、甘油三酯的中间代谢

一、甘油三酯的分解代谢

1.脂肪动员(fat mobilization):贮存在脂肪组织中的甘油三酯在脂肪酶作用下逐步分解成脂酸和甘油,释放入血供其他组织氧化利用的过程。脑、神经组织及红细胞等不能直接利用脂酸;脂肪组织和骨骼肌缺乏甘油,激酶不能利用甘油。

2.脂酸的β—氧化过程

(1)β--氧化是脂酸最主要的氧化分解形式,除脑组织和成熟的红细胞外,大多数组织都能氧化分解脂酸。肝和肌肉最活跃。

(2)氧化部位:内质网及线粒体外膜(3)β--氧化大致可分为:活化——转移——氧化(4)脂酸的活化——CoA(消耗了2分子ATP)(5)脂酰CoA进入线粒体:脂酸β--氧化酶系分布在线粒体基质中,长链脂酰CoA不能自由通过线粒体内膜,需载体肉碱。(6)肉碱脂酰转移酶I和酶II是同工酶,酶I是限速酶,酶I受丙二酰CoA抑制,酶II受胰岛素抑制,胰岛素对脂酸的氧化具有直接和间接双重抑制作用。(7)脂酰CoA的β--氧化:脱氢——加水——再脱氢——硫解(图8-9)(8)脂酰氧化的能量生成及生理意义①1分子硬脂酸完全氧化可净生成146个高能磷酸键,为机体提供大量能量②脂酸β--氧化也是脂酸的改造过程

(9)脂酸β--氧化的特点

①β--氧化过程在线粒体基质内进行②β--氧化为一循环反应过程,由脂肪酸氧化酶系催化,反应不可逆③需要F,NAD,CoA为辅助因子④每循环一次,生成一分子FADH2,一分子NADH,一分子乙酰CoA和一分子减少两个碳原子的脂酰CoA(7次)

软脂酸+ATP+7H2O+7FAD+7NAD+8CoA==8乙酰CoA+7FADH2+7NADH+7H+AMP+PPi。乙酰辅酶A彻底氧化生成ATP :[(n/2-1)(2+3)+n/2*12]-2=129(软脂酸) 146(硬脂酸)

3.酮体的生成与利用(天然的不饱和的脂肪酸 为顺式的脂肪酸,但是β氧化是方式的脂肪酸)

酮体(kcetone bodies)指脂酸在肝脏中进行正常分解代谢所生成的乙酰乙酸、β--羟丁酸和丙酮的总称。

(1) 酮体的生成:以乙酰CoA为原料,在肝线粒体内,经三步反应:

①乙酰乙酸CoA的生成 ②HMG—CoA的生成③酮体的生成

限速酶:HMG—CoA合成酶(β-羟β-甲基戊二酰CoA)

(2)酮体的利用:在脑、心、肾和骨骼肌等肝外组织细胞线粒体中,酮体利用酶类的活性很强,肝多组织是利用酮体最主要的场所。需要的酶:琥珀酸CoA转硫酶、乙酰乙酸硫解酶、乙酰乙酸硫激酶

(3)酮体生成的意义:①在正常情况下,酮体是肝脏输出能源的一种形式。②在饥饿或疾病情况下,为心、脑等重要器官提供必要的能源。

(4)酮体生成的调节:①饱食和饥饿的影响 a.饱食状况下酮体生成减少 b.饥饿状况下生成增多②丙二酰CoA对生酮作用的调节:丙二酰CoA合成增加,酮体生成减少

第五节、甘油三酯的合成代谢(糖是合成脂肪的原料)

一.脂酸的合成代谢

部位:肝、乳腺及脂肪组织。脂酸的合成体系:胞液体系、内质网体系和线粒体体系

1.软脂酸的生成

(1)原料:乙酰CoA、ATP、NADPH、HCO3— 部位:肝(主要)、脂肪组织等

(2)脂酸合成关键酶:乙酰CoA羧化酶,催化脂酸生物合成的限速反应,分布于细胞液中。

(3)脂酸合成酶系 大肠杆菌:多酶复合体(七种酶蛋白聚合在一起)高等动物:多功能酶(一个基因编码的一条多肽链)

(4)脂酸合成过程:从乙酰CoA及丙二酰CoA合成长链脂酸,是一个重复加成过程,每次延长2个碳原子。启动——装载——缩合——加氢——脱水——再加氢——硫解

(经过7次循环,消耗1乙酰CoA,7丙二酰CoA、7ATP和14NADPH+H+,即生成1分子软脂酰ACP酰基载体蛋白)

2.软脂酸的加工改造

(1)碳链长度的加工改造:①内质网碳链延长系统 ②线粒体碳链延长系统 ③脂酸碳链的缩短

(2)饱和度的加工改造

二、3-磷酸甘油合成(糖代谢)

三、甘油三酯、

3脂肪酸+甘油+7ATP+4H2==甘油三酯+7ADP+7Pi

第九章 蛋白质分解代谢

第一节 蛋白质的营养作用

营养必需氨基酸(名词解释):是指体内需要而又不能自身合成,必需由食物供应的氨基酸。人体内的8种营养必需氨基酸:缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸、甲硫氨酸、色氨酸、苏氨酸、赖氨酸(选择题)辅助记忆法:“一 笨 蛋 来 宿 舍 歇 凉”(异亮)(苯丙)(甲硫)(赖)(苏)(色)(缬)(亮)

一、蛋白质的营养作用: 1.蛋白质的生理功能:主要有:①是构成组织细胞的重要成分;②参与组织细胞的更新和修补;③参与物质代谢及生理功能的调控;④氧化供能;⑤其他功能:如转运、凝血、免疫、记忆、识别等。 2.氮平衡:体内蛋白质的合成与分解处于动态平衡中,故每日氮的摄入量与排出量也维持着动态平衡,这种动态平衡就称为氮平衡。氮平衡有以下几种情况: ⑴氮总平衡:每日摄入氮量与排出氮量大致相等,表示体内蛋白质的合成量与分解量大致相等,称为氮总平衡。此种情况见于正常成人。 ⑵氮正平衡:每日摄入氮量大于排出氮量,表明体内蛋白质的合成量大于分解量,称为氮正平衡。此种情况见于儿童、孕妇、病后恢复期。 ⑶氮负平衡:每日摄入氮量小于排出氮量,表明体内蛋白质的合成量小于分解量,称为氮负平衡。此种情况见于消耗性疾病患者(结核、肿瘤),饥饿者。 3.蛋白质的营养价值及互补作用:蛋白质营养价值高低的决定因素有:① 必需氨基酸的含量;② 必需氨基酸的种类;③ 必需氨基酸的比例,即具有与人体需求相符的氨基酸组成。将几种营养价值较低的食物蛋白质混合后食用,以提高其营养价值的作用称为食物蛋白质的互补作用。

第二节 蛋白质的消化、吸收与

一、蛋白质的消化

人体氨基酸主要来源于食入蛋白的消化、吸收。食物蛋白质在胃、小肠及肠粘膜细胞中经一系列酶促反应水解生成氨基酸及小分子肽的过程称为蛋白质的消化。

1.胃的消化胃蛋白酶水解食物蛋白质为多肽2.小肠的消化小肠是蛋白质消化的主要场所,小肠中蛋白质的消化主要靠胰酶来完成,胰液中的蛋白酶基本分为内肽酶(endopeptidase)——胰、糜、弹性蛋白与外肽酶(exopeptidase)——羧肽酶A、B两大类。

二、蛋白质在肠中的:主要在大肠中进行,是细菌对未消化蛋白质及其消化产物的分解作用,可产生有毒物质。

胺类生成产生假神经递质(苯乙醇胺、羟酪胺),竞争性抑制儿茶酚胺传递兴奋——肝性脑昏迷(肝昏迷)

肠道细菌的蛋白酶将蛋白质水解成氨基酸,再经氨基酸脱羧基作用,产生胺类。

1、 氨的生成(了解)人体肠道中氨的来源主要有两个:一个是未吸收的氨基酸在肠道细菌作用下脱氨基而生成;另一个是血液中的尿素渗入肠道黏膜,受肠道细菌尿素酶的水解而生成氨。

2、 其他有害物质生成(了解)

三、氨基酸的脱氨基作用: 氨基酸主要通过三种方式脱氨基,即氧化脱氨基,联合脱氨基和非氧化脱氨基。 1.氧化脱氨基:反应过程包括脱氢和水解两步,反应主要由L-氨基酸氧化酶和谷氨酸脱氢酶所催化。L-氨基酸氧化酶是一种需氧脱氢酶,该酶在人体内作用不大。谷氨酸脱氢酶是一种不需氧脱氢酶,以NAD+或NADP+为辅酶。该酶作用较大,属于变构酶,其活性受ATP,GTP的抑制,受ADP,GDP的激活。 2.转氨基作用:由转氨酶催化,将α-氨基酸的氨基转移到α-酮酸酮基的位置上,生成相应的α-氨基酸,而原来的α-氨基酸则转变为相应的α-酮酸。转氨酶以磷酸吡哆醛(胺)为辅酶。转氨基作用可以在各种氨基酸与α-酮酸之间普遍进行。除Gly,Lys,Thr,Pro外,均可参加转氨基作用。较为重要的转氨酶有: ⑴ 丙氨酸氨基转移酶(ALT),又称为谷丙转氨酶(GPT)。催化丙氨酸与α-酮戊二酸之间的氨基移换反应,为可逆反应。该酶在肝脏中活性较高,在肝脏疾病时,可引起血清中ALT活性明显升高。 ⑵ 天冬氨酸氨基转移酶(AST),又称为谷草转氨酶(GOT)。催化天冬氨酸与α-酮戊二酸之间的氨基移换反应,为可逆反应。该酶在心肌中活性较高,故在心肌疾患时,血清中AST活性明显升高。 3.联合脱氨基作用:转氨基作用与氧化脱氨基作用联合进行,从而使氨基酸脱去氨基并氧化为α-酮酸的过程,称为联合脱氨基作用。可在大多数组织细胞中进行,是体内主要的脱氨基的方式。 4.嘌呤核苷酸循环(PNC):这是存在于骨骼肌和心肌中的一种特殊的联合脱氨基作用方式。在骨骼肌和心肌中,腺苷酸脱氨酶的活性较高,该酶可催化AMP脱氨基,此反应与转氨基反应相联系,即构成嘌呤核苷酸循环的脱氨基作用。

四、氨的代谢

1.氨有毒,进入血液形成血氨,过高会引起脑功能紊乱,与肝性脑病的发病有关2.来源:①AA脱氨(主要)②肠道 ③肾脏来源

3.转运

(1)丙氨酸—葡萄糖循环

运送至肝 氨(合成尿素)

①AA转氨给丙酮酸 丙氨酸 糖异生

联合脱氨 丙酮酸 葡萄糖

运送至肌肉

形式 ②在肌肉 肝内进行

(2)谷氨酰胺(脑.肌肉等 肝.肾) (脑解氨毒主要途径)

(需要ATP参加)

①氨 谷氨酰胺 肝、肾中经谷氨酰胺酶水解成氨和谷氨酸

转变 经血液

②即是氨的解毒产物也是储存和运输形式

③谷氨酰胺酶可抑制肿瘤成分、降血氨、治白血病

五、尿素生成 (重点)

1.氨通过肝细胞合成尿素而解毒,尿素氮占排氮80%~90%2.肝(合成尿素主要器官),肾、脑(合成甚微),肾(排尿主要器官)

3.鸟氨酸循环(2分子氨与1分CO2结合成1分子尿素及1分子H2O

①原料:两个N(一个来自NH3,一个来自天冬AA),一个C(来自CO2)②消耗3个ATP③合成部位:肝细胞线粒体内和胞液

④关键酶:CPS-I,精氨酸代琥珀酸合成酶(限速酶)4.尿素合成调节

食物蛋白质 尿素合成速度 (反之亦同)

CPS-I调节:AGA影响CPS—I 激活

精氨酸浓度 AGA CPS—I 尿素

尿素合成酶系调节:精氨酸代琥珀酸合成酶活性最低(限速酶)

六、α-酮酸的代谢: 1.再氨基化为非必需氨基酸。 2.转变为糖或脂:某些氨基酸脱氨基后生成糖异生途径的中间代谢物,故可经糖异生途径生成葡萄糖,这些氨基酸称为生糖氨基酸。个别氨基酸如Leu,Lys,经代谢后只能生成乙酰CoA或乙酰乙酰CoA,再转变为脂或酮体,故称为生酮氨基酸。而Phe,Tyr,Ile,Thr,Trp经分解后的产物一部分可生成葡萄糖,另一部分则生成乙酰CoA,故称为生糖兼生酮氨基酸。 3.氧化供能:进入三羧酸循环彻底氧化分解供能。

七、 氨基酸脱羧基

一脱羧基作用

脱羧

AA 胺

氨基酸 脱羧酶

辅酶:磷酸吡哆酶

1.γ--氨基丁酸

谷氨酸脱羧酶(在脑、肾中活性很高)

L—谷氨酸 γ—氨基丁酸(GABA)(是中枢抑制性神经递质)

2.牛磺酸 氧化 脱羧

L—半胱氨酸 磺酸丙氨酸 牛磺酸

主要来自食物、有肾脏排出

作用:(1)广泛生物学功能,一种中枢抑制性神经递质(2)维持血液、免疫、生殖系统功能正常(3)促进婴儿发育

3.组胺作用:增加毛细血管通透性,降血压;刺激蛋白激酶、胃酸分泌

4. 5-羟色胺作用:神经递质抑制作用;收缩血管作用;扩张骨骼肌血管

5.多胺作用:精脒与精胺调节细胞生成重要物质

二、一碳单位:一些AA分解过程中产生含有一个碳原子集团(名词解释)(重点)

1.不能游离存在,常与四氢叶酸(FH4)结合2.FH4既是运载体,又是辅酶。一碳单位结合在N5、N10位上3.能产生一碳单位的AA:丝氨酸、甘氨酸、组氨酸及色氨酸。4.一碳单位之间通过氧化还原反应彼此转变,但N5—甲基四氢叶酸是不可逆的。5.生理作用:合成嘌呤及嘧啶的原料,在核酸生物合成中占重要地位。

三、含硫氨基酸的代谢

1.含硫氨基酸:甲硫氨酸、半胱氨酸、胱氨酸(后两者不能转变为前者外,皆可转变)

2.甲硫氨酸循环 腺甘转移酶 甲基转移酶

甲硫氨酸+ATP S-腺苷甲硫氨酸(SAM) S-腺苷同型半胱氨酸

同型半胱氨酸 脱腺苷

接受N5-甲基四氢叶酸提供的甲基

利用N5-CH3-FH4唯一反应

甲硫氨酸合成酶,辅酶VB12

3.缺乏VB12 巨幼红细胞贫血4.肝是合成肌酸的主要器官5.半胱氨酸(—SH)与胱氨酸(—S—S—)对维持蛋白质结构有重要作用、解毒、抗氧化等重要生理功能

四、芳香族氨基酸代谢

1.含苯丙氨酸、酪氨酸、色氨酸

羟化酶

2.苯丙氨酸 酪氨酸(参与甲状腺激素、儿茶酚胺、黑色素代谢,自身氧化分解)3.白化病(缺乏酪氨酸酶引起) 4.苯丙酮酸尿症(缺乏苯丙氨酸羟化酶)5.呆小症、地方性甲状腺肿(缺乏甲状腺激素)6.尿黑酸症(缺乏尿黑酸氧化酶)

核苷酸代谢

一、嘌呤核苷酸的合成代谢

体内嘌呤核苷酸的合成可分为从头合成和补救合成两条途径。1.从头合成途径(1)合成部位:肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠和胸腺。而脑脊髓则无法进行此合成途径。(2)嘌呤环合成的原料来源

CO2 甘氨酸

C N

天冬氨酸 N C

C 甲酰基(一碳单位)

甲酰基 C C

(一碳单位)

N N

记忆口诀:左—C,右—C,甘氨当中站,两边坐谷氨,左上天冬氨,头顶CO2

(3)可分为三个阶段:首先是5-磷酸核糖的活化,再分十步反应合成次黄嘌呤核(肌)苷酸(IMP),再通过不同途径分别生成腺嘌呤核苷酸(AMP)和鸟嘌呤核苷酸(GMP)①5-磷酸核糖的活化;关键酶(磷酸戊糖焦磷酸激酶)产物(PRPP:5-磷酸核糖-@-焦磷酸)②次黄嘌呤核苷酸(IMP)的合成:③AMP和GMP的合成

(4)从头合成示意

PRPP合成酶 PRPP酰胺转移酶

5—磷酸核糖 磷酸核糖焦磷酸 5—磷酸核糖胺

(PRPP)

ATP AMP

ATP AMP 次黄嘌呤核苷酸

GTP GMP 黄嘌呤核苷酸

(5)嘌呤核苷酸从头合成特点:A、5-磷酸核糖分子上合成PRPP;B、IMP的合成需5个ATP,6个高能磷酸键;

C、AMP或GMP的合成又需1个ATP;D、脱氧核糖核苷酸的生成;E、在核苷二磷酸水平上进行。

一、嘌呤核苷酸的分解代谢

嘌呤核苷酸及嘌呤既可以进入补救合成途径又可经水解,脱氨及氧化作用生成尿酸,随尿排出体外。

二、嘌呤核苷酸的代谢异常及抗代谢物

1.嘌呤核苷酸的代谢异常:痛风(gout)。HGPRT基因缺陷导致嘌呤合成过多,明显的高尿酸血症。是尿酸过量生产或尿酸排泄成不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨,软组织,肾脏以及关节处。在关节处的沉积会造成剧烈的疼痛。

2.临床用别嘌呤醇治痛风,因为别嘌呤醇与次黄嘌呤结构类似,可抑制黄嘌呤氧化酶,从而抑制尿酸的合成。

第三节 嘧啶核苷酸代谢

一、嘧啶核苷酸的合成代谢也有从头合成和补救合成两条途径

1.从头合成途径

指利用磷酸核糖,氨基酸,一碳单位及二氧化碳等简单物质为原料,经过一系列酶促反应,合成嘧啶核苷酸的途径。

(1)合成部位:主要在肝细胞胞液中进行;先合成嘧啶环,然后再与磷酸核糖连接生成核苷酸。

(2)合成的原料:氨基甲酰磷酸和天冬氨酸;(3)尿嘧啶核苷酸的从头合成:

谷氨酰胺和CO2合成氨基甲酰磷酸通过多步反应生成乳清酸与PRPP缩合并脱羧生成尿苷酸(UMP)

一、嘧啶核苷酸的分解代谢

HO4 HO4 1-磷酸核糖

嘧啶核苷酸 嘧 啶 核 苷 嘧啶

核苷酸酶 核苷磷酸化酶

二、嘧啶核苷酸的代谢异常及抗代谢物

1.异常:乳清酸尿症:此病有两种类型,一种是缺乏乳清酸磷酸核糖转移酶和乳清酸核苷酸脱羧酶;另一类型只缺乏乳清酸核苷酸脱羧酶。2.临床用尿嘧啶或尿苷治疗。尿苷经磷酸化可生成UMP、UTP,进而反馈抑制乳清酸的合成以达到治疗的目的。

3.抗代谢物:嘧啶类似物;嘧啶核苷酸类似物;氨基酸类似物;叶酸类似物

*从头合成

指利用磷酸核糖,氨基酸,一碳单位及二氧化碳等简单物质为原料,经过一系列酶促反应,合成嘧啶核苷酸的途径。

核苷酸的补救合成

(1)利用体内游离的碱基,经过简单的反应过程,合成核苷酸;(2)生理意义:一方面在于可以节省从头合成时能量和一些氨基酸的消耗;另一方面,体内某些组织器官,如脑,脊髓等由于缺乏从头合成的酶体系,只能进行补救合成。

第十一章 物质代谢的联系与调节

第一节 物质代谢的相互联系

一、 在能量上的相互联系

三大营养素的氧化功能,可分为三个阶段:

糖原 脂肪 蛋白质

第一阶段:无能量释放

葡萄糖 甘油脂肪酸 氨基酸

第二阶段:释放贮存能量的1/3

乙酰辅酶A

1/2O2 ATP ADP+Pi

2H 第三阶段:释放贮存能量的2/3

H2O 三羧酸循环 CoASH

CO2

三大营养物质互相代替,互相制约,当任一营养素的分解氧化占优势时,就会抑制和节省其他供能物质的降解

二、糖、脂、蛋白质及核苷酸代谢之间的相互联系

1.糖可以转变为脂肪(超机能量消耗)转化为脂肪2.脂肪中的甘油可以转化为糖,而脂肪不能转变成糖3.糖可以转变为胆固醇,也能为磷脂合成提供原料4.胆固醇不能转变为糖,磷酸甘油磷脂中的甘油部分可以转变为糖5.糖代谢正常进行是脂肪分解代谢顺利进行的前提6.糖代谢与氨基酸代谢的相互关系7.脂类代谢与氨基酸代谢的相互关系8.核苷酸与氨基酸代谢的相互联系

第四节 代谢调节

1.代谢调节普通存在于生物界,是生物进化过程中逐步形成的一种适应能力。 物质代谢的三级水平调节:

2.细胞水平代谢调节是基础,激素水平和整体水平的调节最终是通过细胞水平的代谢调节实现的

一、细胞水平的调节

1.细胞内酶的隔离分布

(1)意义:使相关联而又不同的代谢途径有联系又不互相干扰,保证各条代谢途径按各自不同方向顺利进行

(2)代谢反应的速度与方向是由关键酶或调节酶决定 (3)特点:关键酶催化第一步反应,催化速度最慢,其活性大小决定整个代谢的总速度;催化不可逆反应,属于调节酶(结构、数量调节);受底物,代谢物或效应剂调节

2.变构调节

(1)变构调节的概念:小分子化合物与酶蛋白分子活性中心外的某一部位,特异的非共价键结合,引起酶分子构象变化,从而改变构象变化 (2)变构调节的生理意义 ①代谢途径的终产物作为变构抑制剂反馈抑制该途径的起始反应的酶,从而即可使代谢产物的生成不致过多,也避免原材料的不必要浪费 ②通过变构调节,使能量得以贮存 ③通过变构调节维持代谢物的动态平衡 ④通过变构调节使不同代谢途径相互协调

3.化学修饰调节

化学修饰的方式有:磷酸和去磷酸化、乙酰化与脱乙酰、甲基化与脱甲基,腺苷化与脱腺苷及SH与-S-S-互变

4.酶量的调节

(1)酶蛋白合成的诱导与阻遏:诱导剂与阻遏剂(2)一旦酶被诱导合成之后,由于酶量增加,此时即使除去诱导剂,仍可保持酶活性和调节效应,直到酶降解(3)通常酶作用的底物、激素或药物可作为酶的诱导剂(4)药物可诱导肝细胞微粒体中加单氧酶或其他一些药物代谢酶的合成,加速肝的生物转化作用,从而使药物失活而产生耐药性

二、 激素水平的代谢调节

1.激素作用的一个重要特点:高度的组织特异性、效应特异性2.膜受体是存在于细胞表面质膜上的跨膜糖蛋白

膜受体激素作用的共同规律:激素与相应的受体特异识别结合成激素—受体复合物,通过G蛋白介导影响某种酶活性变化而产生第二信使,再由第二信号将激素信号逐级传递放大,最终产生系列代谢及生理效应(蛋白质激素、肽类激素和儿茶酚胺等)

3.胞内受体激素 (类固醇激素、甲状腺激素等)

(1)胞内受体存在于胞液或核内(2)疏水性激素可透过细胞膜进入细胞内或直接进入细胞核与核内特异受体识别结合成激素--受体复合物,或是与胞液中的特异受体结合进入核内,再与核内特异受体结合(3)在核内,两个激素受体复合物形成二聚体,并与DNA分子上的激素反应元件结合,促进(或抑制)相应基因的表达以调节细胞内蛋白质或酶的含量,从而实现激素对物质代谢的调节

三、 整体调节

1.饥饿 (1)短期饥饿: 头1~2天,依靠肌糖原分解来维持血糖恒定。血糖下降到一定程度,胰高血糖素分泌↑,胰岛素分泌↓,这两种激素增减会引起“三增强一减弱”为主要特征:①蛋白质分解增强,氨基酸释放增多 ②糖异生作用增强:原料来自蛋白质分解释放的氨基酸,其次是乳酸,少量来自脂肪动员的甘油 ③脂肪动员增强,酮体生成增多:酮体在饥饿初期被心、肝、肾利用 ④组织氧化葡萄糖减弱:大脑仍以氧化葡萄糖为主

所以,在饥饿初期,及时补充葡萄糖,不仅可以减少酮体生成,降低酸中毒发生,同时也可以减少体内蛋白质的消耗,避免负氮平衡

(2)长期饥饿 主要的代谢变化:(1)组织蛋白质分解减少,负氮平衡有所改善

(2)肾皮质的糖异生作用明显增强,其能力几乎和肝相当,糖异生原料主要是乳酸和丙酮酸

(3)脂肪动员进一步增强,肝的生酮量进一步增多,肾皮质也可产生一定量的酮体

(4)心、肌、肾皮质以直接氧化脂酸为主,节省酮体以供脑组织利用,脂主要靠氧化酮体供能

2.应激

(1)血糖升高: ①肾上腺素、去甲肾上腺素及胰高血糖素分泌↑,促进糖原分解,而抑制糖原合成 ②肾皮质激素、胰高血糖素又可加快糖异生作用,使血糖来源增加 ③胰岛素水平降低,组织细胞摄取和利用葡萄糖↓,也可进一步升高血糖

(2)脂肪动员加速

①脂解激素(肾上腺素、胰高血糖素及糖皮质激素)分泌↑,而胰岛素分泌↓,促进脂肪大量动员,血液中脂酸↑,可作为心、肌、肾组织能量的来源 ②肝生酮作用↑,肝外组织利用酮体也增加,节省葡萄糖的利用

(3)蛋白质的分解加强: 肾皮质激素分泌↑,胰岛素分泌↓,引起蛋白质加强,氨基酸释出↑血中氨基酸↑:①为糖异生提供原料;②氨基酸分解加强,尿素合成及尿氮排出↑,出现负氮平衡

第十二章 DNA的生物合成

中心法则:

第一节 复制的基本规律

1.复制是指遗传物质的传代,以亲代DNA为模板、dNTP为原料,按碱基配对原则合成子代DNA的过程。其化学本质是酶促生物细胞内单核苷酸的聚合。2.DNA复制时,亲代DNA解开为两股单链,各自作为模板合成与模板互补的子链。DNA复制的方式和特点是半保留复制:即母链DNA解开为两股单链,各自作为模板按碱基配对规律,合成与模板互补的子链。

3.复制大多是双向的,即形成两个生长点或复制叉。4.两个相邻起始点之间的距离称为一个复制子(replicon),它是独立完成复制的功能单位。5. 所有已知DNA聚合酶的合成方向都是5′→ 3′,所以在复制时,一条链的合成方向和复制叉前进方向相同,可以连续复制,这条新合成的链成为领头链(leading strand);而另一条链的合成方向与复制叉前进方向相反,不能顺着解链方向连续复制,延长过程中,又要等待下一段有足够程度的模板, 再次生成引物而延长,然后连接起来,这条链称之为随从链(lagging strand)。将领头链连续复制,而随从链从不连续复制的复制方式成为半不连续复制(semidiscontinuous replication)。随从链中不连续复制的小片段称为冈崎片段。6.不连续复制片段只出现于同意复制叉上的一股链,随后,不连续片段静过去除引物,填补引物留下的空隙,连成完整的DNA链。

第二节 DNA复制的酶学和拓扑学变化

1.双螺旋DNA的复制所需条件:(1)模板:指解开成单链的DNA母链;(2)底物:脱氧核苷三磷酸即dATP、dGTP、dCTP、dTTP,总称dNTP;(3)酶:DNA聚合酶、拓扑异构酶、解螺旋酶、引物酶、DNA连接酶等;(4)引物:长度约为数个至数十个核苷酸不等的RNA或DNA分子,提供3′—OH末端使dNTP可以依次聚合;(5)多种蛋白质因子等。

2.DNA聚合酶是指以dNTP作为底物催化DNA合成的一类酶,合成过程中需要DNA作为模板,故称为依赖DNA的DNA聚合酶(DNA-dependent DNA polymerase,DDDP,DNA-pol),它们主要行使两个基本功能:基因组复制时DNA的合成和DNA损伤或重组后(或随从链引物切除后)缺少的DNA片段的重新合成。所有的DNA聚合酶都有5′→3′聚合酶活性,这就决定了DNA的合成方向是从5′末端到3′末端。

3.DNA聚合酶的一个共同特征是不能从头合成DNA的一条链,即不能从游离的核苷酸开始合成DNA链,这个聚合反应需要引物,所谓引物(primer)是互补于模板链的一个寡聚核苷酸片段。

4.DNA聚合酶只能把一个核苷酸加接到现存的一条链的3′—OH末端,而没有重新开始合成一条链的能力。所有细胞和多数病毒的DNA复制,首先利用模板合成一段RNA引物。

5.DNA-pol包括:DNA-pol I、DNA-pol II、DNA-pol III

(1)DNA-pol I不是细胞中主要的DNA复制酶。DNA-pol I合成DNA的速度较慢,DNA-pol I的复制连续性相当低,DNA-pol I在活细胞内的功能,主要是对复制中的错误进行校读,对复制和修复中出现的空隙进行填补。另外,利用它独特的5′→ 3′外切酶活性,专门用于除去DNA合成所需的引物。(2)DNA-pol II基因发生突变,细菌依然能存活,它对DNA损伤有修复功能。(3)DNA-pol III是大肠杆菌主要的复制酶,在DNA复制延长中真正起催化作用。

6.原核生物DNA聚合酶

DNA-pol I

DNA-pol II

DNA-pol III

5′→3′多聚酶活性

3′→5′外切酶活性

5′→3′外切酶活性

功能

切除引物、修复、填补空缺

修复

复制

7.错配DNA增加了DNA聚合酶3′→5′核酸外切酶的活性,将错配的核苷酸从引物链的3′端除去,正确配对的引物模板接头滑回DNA聚合酶的活性位点,同时利用5′→3′聚合酶活性补回正确配对,DNA合成继续进行,这种功能称为即时校读(proofread)。DNA聚合酶的即时校读功能只能把最近发生的错误去除掉。它的参与显著增加了DNA合成的精确度

8.解螺旋酶(helicase)又可称为解链酶,它通常利用ATP水解来提供必需的能量打断氢键,使DNA的两条链分开。

典型的解螺旋酶为环形的六聚体蛋白,它可能具有两种构象,一种形式与双链体DNA结合,另一种形式与单链DNA结合。两种形式的转化引发双链体熔化,而且这需要ATP的水解,即酶揭开一个碱基对需要水解一个ATP。解螺旋酶在一个与双链体区相连的单链区开始解链,而且这些环形的蛋白质复合体是环绕着单链-双链接头附近复制叉上的两条单链中的一条上,都沿着一定的方向运动。这是所有DNA解螺旋酶都具有的特性,称作极性。DNA解螺旋酶可以有5′→3′或3′→5′的极性,此方向始终是根据结合的(或被环形解螺旋酶环绕的)DNA链决定的。

9.DNA拓扑异构酶(DNA topoisomerase),简称拓扑酶,主要作用是通过水解DNA分子中的某一部位的磷酸二酯键使超螺旋释放,然后再催化形成磷酸二酯键,从而改变超螺旋状态。拓扑酶是一种可逆的核酸酶,它们可共价结合DNA分子上的磷酸基团,切断磷酸二酯键,这一断裂反应是可逆的,切口可迅速闭合。◎拓扑酶Ⅰ可在双螺旋DNA中一条链上形成切口,使切口两侧的DNA以切口对面的磷酸基团为中心旋转,从而使DNA双螺旋中的张力得以释放,不消耗ATP,参与RNA合成。拓扑酶Ⅱ可以同时共价结合于DNA的两条链,将两条链切断,再重新连接,消耗ATP,参与DNA合成。

9. .DNA解螺旋酶经过之后,新产生的单链DNA必须保持碱基未配对的状态,直至可被用作DNA合成的模板为止。为了使分开的链稳定,单链DNA结合蛋白(single strand binding protein,SSB)迅速地与单链DNA结合,阻止其再形成双链体状态。一个SSB的结合会促进另一个SSB与其紧邻的单链DNA结合,称为协同结合(cooperative binding)。

10.每一个冈崎片段都由引物所起始,刚好在下一个片段的RNA引物处终止。

11.DNA连接酶不仅在复制中起连接的作用,在DNA修复,重组,剪接中也起缝合缺口作用。

第三节 DNA生物合成过程

1.复制是一个连续的过程,为便于叙述,把它分为三个阶段:起始,延长和终止。2.复制起始:亲代DNA解链解旋,SSB四聚体结合DNA单体链区,起稳定单链DNA,并防止DNA复性作用。拓扑酶II型酶,消除正超螺旋结构。3.复制的延长:前导链的合成、后随链的合成。4.复制终止和端粒酶:染色体DNA是线性结构,染色体两端DNA子链上最后复制的RNA引物,被去除后留下空隙。形态学上,染色体DNA末端膨大成粒状,这是因为DNA和它的结合蛋白紧密结合,像两顶帽子那样盖在染色体两端,因而得名端粒。端粒的功能是稳定染色体末端结构,防止染色体间末端连接,并可补偿DNA5'末端在清除RNA引物后造成的空缺。5.由于端粒酶的存在,端粒一直保持着一定的长度。在缺乏端粒酶活性时,细胞连续将使端粒不断缩短,短到一定程序即引起细胞生长停止或凋亡。

第四节 反转录和其他复制方式

1.反转录(reveser transcription),即以病毒RNA为模板,利用宿主细胞中4种dNTP作底物,在引物的3'端按5'→3'方向合成与RNA互补的DNA链的过程。2.反转录病毒和反转录酶:含有反转录酶的RNA病毒,称作反转录病毒。反转录酶,即RNA指导DNA的聚合酶(RNA dependent DNA polymerase,RDDP),产生于反转录病毒感染的动物细胞中。3.反转录酶催化活性:(1) RNA指导的DNA聚合酶活力,利用RNA作模板,在其上合成出一条互补的DNA链,形成RNA-DNA杂合分子;(2)RNase H的活力,专门水解RNA-DNA杂合分子中的RNA; (3)DNA指导的DNA聚合酶活力,在新合成DNA链上合成另一条互补DNA链,形成双链DNA分反转录酶像RNA聚合酶一样没有3'→5'外切酶活性,因此没有校对功能。

第五节 DNA损伤与修复

1.突变(mutation)是指DNA分子上碱基的改变或表型功能的异常变化,也称为DNA损伤(DNAdamage)。

2.突变的意义:物种进化的根本原因就是基因突变的不断发生所造成的,没有突变就不可能有现今五彩缤纷的生物世界。

3.引发突变的因素:(1)物理因素主要是指紫外线和各种辐射,其中又以紫外线照射研究得较多(2)化学因素:是指一些化学诱变剂,大多数是致癌物。(3)生物诱变剂:如可移动遗传因子,即能在基因组中移动的DNA序列。

4.突变的分子改变类型:化学或物理因素容易造成细胞DNA损伤,主要有以下几种类型:

(1)错配:自发突变和不少化学诱变都能引起DNA上某一碱基的置换,使得子代多聚核苷酸突变位置上核苷酸与模板DNA对应位置上核苷酸不配对,这种DNA分子上的碱基错配又称为点突变(point mutation)。点突变分为两类:①转换(transition):即一个嘌呤被另一个嘌呤所取代,或者一个嘧啶被另一个嘧啶所取代的置换,是同型碱基间的改变。②颠换(transversion):即一个嘌呤被另一个嘧啶所取代或一个嘧啶被另一个嘌呤所取代的置换,是异型碱基间的改变。

(2)缺失和插入:并非所有编码区的插入和缺失都导致移码:三或三的整数倍核苷酸的插入或缺失,不一定引起移码突变。

(3)重排:DNA分子内较大片段的交换,称为重组或重排。移位的DNA可以在新位点上颠倒方向反置(倒位),也可以在染色体之间发生交换重组。

5.DNA损伤的修复(repairing):

(1)直接修复:包括光修复和断裂处直接修复(2)切除修复(excision repairing):在一系列酶的作用下,将DNA 分子中受损伤部分切除,同时以另一条完整的链为模板,合成出被切除部分的空隙,使DNA恢复正常结构的过程。这是比较普遍的一种修复机制,对多种损伤均能起修复作用。(3)重组修复(recombination repairing):先复制后修复。重组蛋白RecA的核酸酶活性将另一股正常母链上相应核苷酸序列片段移至子链缺口处,然后用再合成的序列来补上母链的空缺。这个过程并没有实际修复模板链起初的损伤,只是子链被修复了,起初的损伤仍保留在基因组中。

第十三章 RNA的生物合成(转录)

1.DNA指导RNA合成的过程称为转录。2.DNA是合成RNA的模板,mRNA是蛋白质合成的模板。

第一节 RNA合成中的模板和酶

1.在双链DNA中,能转录出RNA的DNA片段,称为结构基因。

2.DNA双链中只能有一股链按碱基配对规律指导转录生成RNA,这股单链称为模板链,相对的另一股连则称为编码链。在这DNA双链上,一股链用作模板指导转录,另一股链不转录,而且模板链并非总是在同一单链上。这种选择性的转录称为不对称转录。3.RNA生物合成是酶促反应,催化此类反应的酶是依赖DNA的RNA聚合酶,简称RNApol。α2ββ‘ω亚基聚合体称为核心酶,σ亚基加上核心酶称为全酶。σ亚基的功能是辨认转录起始点,亚基参与转录全过程催化NTP聚合,β´亚基参与模板的结合 第二节RNA生物合成(转录)过程

1.转录起始不需引物,两个与模板配对的相邻核苷酸,在RNApol催化下生成磷酸二酯键就可以直接连接起来。

2、转录延长,σ亚基从起始复合物上脱落后,RNApol核心酶的构象随之发生改变,并沿着模板链3‘-5’方向滑行。

3.依赖Rho因子的转录终止 ρ因子和RNA聚合酶结合后都可发生构象变化,从而使RNA聚合酶停顿。

4..非依赖Rho因子的转录终止

接近终止区的一段碱基可形成鼓槌状的茎环(stem-loop)或称发夹(hairpin)形式的二级结构。在模板链上靠近终止处有多个T,因此转录产物RNA的3’末端。常有多个连续的U。茎环这种二级结构式阻止转录继续向下游推进的关键。其机理为:一是RNA分子形成茎环结构后,可能改变了RNA聚合酶的构象。

第一节 RNA的转录后加工

1.转录生成的RNA是初级转录产物(primary transcripts)。在真核生物种,几乎所有的初级产物都需经过一定程度的加工(processing),也称为转录后修饰(post-transciptional modification),才能成为成熟的RNA,具有活性。

2.mRNA首、尾的修饰:成熟mRNA的5’端通常都有一帽子结构(防水解)。3’端通常还带有一段聚腺苷酸尾巴。

3.通常把断裂基因中的编码和非编码序列称为外显子(exon)和内含子(intron),加工切除内含子、连接外显子 的过程称剪接。

4.复制与转录

复制

转录

模板

两股链均复制

模板链转录

原料

dNTP

NTP

DNA聚合酶

RNA聚合酶

产物

子代双链DNA

mRNA,tRNA,rRNA

配对

A-T,G-C

A-U,T-A,G-C

产物后加工

某些碱基甲基化

加帽、尾,剪接,编辑等

第十四章 蛋白蛋的生物合成(翻译)

蛋白质的生物合成(Protein Biosynthesis)即翻译(Translation),就是将核酸中由 4 种核苷酸序列编码的遗传信息,通过遗传密码破译的方式解读为蛋白质一级结构中20种氨基酸的排列顺序 。

第一节 蛋白质生物合成体系

参与蛋白质生物合成的物质包括:1.原料:氨基酸 2.模板:mRNA3.运载工具:tRNA 4.装配场所:核蛋白体5.能量:GTP,ATP 6.酶:氨基酰tRNA合成酶;转肽酶

一、mRNA是蛋白质合成的模板

1.mRNA包括编码区、 5¢-非翻译区和3¢-非翻译区。2.氨基酸或蛋白质合成的起始、终止信号,称为三联体密码(triplet coden)。mRNA上的四种碱基可组成 64(43)个密码子,其中61个密码子编码的20种氨基酸 称为有意义的密码子。4.起始密码子(initiation coden): AUG5.终止密码子(termination coden): UAA, UAG, UGA6.遗传密码的5个特点(1)方向性 :mRNA中密码子的阅读方向是5′→3′。(2)连续性(commaless) : 编码蛋白质氨基酸序列的各个三联体密码连续阅读,密码间既无间断也无交叉。(3)简并性(degeneracy) : 遗传密码中,除色氨酸和甲硫氨酸仅有一个密码子外,其余氨基酸有2、3、4个或多至6个三联体为其编码。同义密码子(但每一个密码子仅对应一个氨基酸)。不同物种对密码子有“偏爱性”。

(4)摆动性(wobble):转运氨基酸的tRNA的反密码需要通过碱基互补与mRNA上的遗传密码反向配对结合,但反密码与密码间不严格遵守常见的碱基配对规律,称为摆动配对。

(5)通用性:从简单生物到人类使用同一套密码子。由此可推测所有生物来源于一个共同的祖先

二.tRNA是蛋白质合成的搬运工具

1.tRNA的功能:

(1)搬运氨基酸(2)活化氨基酸(3)在密码子与对应氨基酸之间起接合体(adaptor)的作用。密码子—tRNA反密码子—氨基酸是对号入座的。如:密码子GGU--携带反密码子ACC的tRNA--Gly

2.氨基酰tRNA的生成------ 氨基酸的活化

(1)氨基酸的活化 - 即指氨基酸的a-羧基与特异tRNA的3¢末端CCA-OH结合形成氨基酰-tRNA的过程,这一步反应由氨基酰-tRNA合成酶催化完成,并分两步进行。

(2)氨基酰tRNA合成酶的活性是绝对专一性的,酶同时对氨基酸和tRNA高度特异地识别。氨基酰tRNA合成酶有20种,分别特异性识别相应的20种氨基酸和相应的tRNA 。如:氨基酰tRNA合成酶Gly同时特异性识别Gly和tRNAGly 。氨基酰tRNA合成酶还 有校正 (editing activity)活性。

(3)氨基酸, 氨基酰tRNA合成酶,tRNA及mRNA上的密码子是一对一的关系,从而保证了遗传信息从mRNA准确地传递到蛋白质上。

3.各种氨基酰tRNA的表示方法(1)丙氨基酰tRNA:ala-tRNAala 精氨基酰tRNA:arg-tRNAarg

甲硫氨基酰tRNA: met-tRNAmet(2)起始密码子AUG编码的met由tRNAimet(真核)或tRNAfmet(原核)转运。

(3)大肠杆菌起始密码子编码的met须甲酰化,真核细胞起始密码子编码的met不须甲酰化。(4)起始肽链合成的氨基酰-tRNA:

真核生物: Met-tRNAimet 原核生物:fMet-tRNAifmet

第二节 蛋白质生物合成过程

翻译过程从阅读框架的5´-AUG开始,按mRNA模板三联体密码的顺序延长肽链,直至终止密码出现。 整个翻译过程可分为起始(initiation),延长 (elongation)和终止(termination )三个阶段。

一、翻译的起始

翻译的起始阶段:指mRNA和起始氨基酰-tRNA分别与核蛋白体结合而形成翻译起始复合物 (translational initiation complex)的过程。

1.翻译的起始因子 。原核、真核生物各种起始因子的生物功能见课本P223页的表14-4。

2.真核生物翻译起始过程:(1) 核蛋白体大小亚基分离;(2)起始氨基酰-tRNA(Met- tRNAimet)的结合;(3)mRNA与核蛋白体小亚基的结合(4)小亚基沿mRNA扫描查找起始点。(5)核蛋白体大亚基结合,70S起始复合物形成。

二、肽链合成延长

指根据mRNA密码序列的指导,次序添加氨基酸从N端向C端延伸肽链,直到合成终止的过程。

1.肽链延长在核蛋白体上连续性循环式进行,又称为核蛋白体循环(ribosomal cycle),每次循环增加一个氨基酸,包括以下三步:

进位(entrance),成肽(peptide bond formation)和转位(translocation)

(1进位又称注册(registration) 指根据mRNA下一组遗传密码指导,使相应氨基酰-tRNA进入核蛋白体A位。 (2)成肽 是由转肽酶(transpeptidase)催化的肽键形成过程。(3)转位

三、翻译的终止

1.当mRNA上终止密码出现后,多肽链合成停止,肽链从肽酰-tRNA中释出,mRNA、核蛋白体等分离,这些过程称为肽链合成终止。 2.终止相关的蛋白因子称为释放因子(release factor, RF) 原核生物:RF-1:UAA,UAG RF-2:UAA,UGA

RF-3:促进RF-1或RF-2与核蛋白体结合, 激活转肽酶,并水解GTP 真核生物仅有一个释放因子:eRF, 可识别三种密码子, 并需GTP参与。3.翻译终止过程:1. 终止密码子的辨认2. 肽链的水解和脱落3. tRNA、RF、mRNA的释放,核糖体 ,大小亚基的解聚。 4.多聚核糖体(polyribosome):指多个核糖体同时结合到同一条mRNA上合成多肽链。 意义:提高翻译效率,使蛋白质合成高速、高效进行。5.蛋白质合成能量消耗情况:(1)氨基酸活化:2个ATP(2)翻译起始:原核生物1个GTP。真核生物1个GTP ,1个ATP

(3)翻译延长:每形成一个肽键需2个GTP (4)翻译终止:1个GTP

ATP总消耗数:2n+2(n-1)+2(3)

(n为多肽链氨基酸残基的数目)

第三节 翻译后加工及蛋白质输送

从核蛋白体释放出的新生多肽链不具备蛋白质生物活性,必需经过不同的翻译后复杂加工过程才转变为天然构象的功能蛋白,该过程称为翻译后加工(Post-translational Processing )

一、一级结构的修饰

1.肽链N端Met或Fmet的切除

(1)去除N末端蛋氨酸残基 (2)信号肽及其他肽段的切除

2.个别氨基酸的共价修饰(1)磷酸化:丝氨酸,苏氨酸,酪氨酸 (2)羟基化:脯氨酸,赖氨酸 (3)酰基化:组氨酸 (4)甲基化:色氨酸 (5)核糖基化:精氨酸 意义:或者是蛋白 质所固有的,或者在调节蛋白质功能 时起重要作用。

3.二硫键的形成:两个Cys的-SH脱H氧化而成4.多蛋白的加工 促黑皮质素原(POMC)的水解修饰

5.蛋白质前体中不必要肽段的切除

二、高级结构的修饰

1.亚基聚合:具有四级结构的蛋白质需进行亚基之间的聚合。如血红蛋白4个亚基的聚合2辅基连接:蛋白质与糖、脂类、核酸、血红素等结合形成糖蛋白、脂蛋白、核蛋白、血红蛋白等结合蛋白质。3.脂酰化

三、蛋白质合成后的靶向输送

蛋白质合成后需要经过复杂机制,定向输送到最终发挥生物功能的细胞靶部位,这一过程称为蛋白质的靶向输送(protein targeting)。

1.分泌蛋白的靶向输送(1)真核细胞分泌蛋白等前体合成后靶向输送过程首先要进入内质网。

(2)分泌性蛋白(靶向)输送的两种机制

(3)分泌性蛋白在信号肽的介导下直接穿透膜系统(4)各种新生分泌蛋白的N端有保守的氨基酸序列称信号肽(signal peptide)。 (5)信号肽富含疏水氨基酸,其作用是使新合成的多肽链易于穿过膜系统,随后被信号肽酶切除。信号肽引导真核分泌蛋白进入内质网 (6)分泌性蛋白在信号识别颗粒(SRP)及其受体(对接蛋白)介导下穿透质膜。SRP介导的分泌性蛋白穿透质膜的机制见课本P233页。2.线粒体蛋白的靶向输送 3.核定位蛋白的转运机制

第四节 蛋白质生物合成的干扰和抑制

蛋白质生物合成是很多天然抗生素和某些毒素的作用靶点。它们就是通过阻断真核、原核生物蛋白质翻译体系某组分功能,干扰和抑制蛋白质生物合成过程而起作用的。

干扰素(interferon) :是真核细胞感染病毒后分泌的一类具有抗病毒作用的蛋白质,它可抑制病毒繁殖,保护宿主细胞。

第十五章 基因的表达调控

第一节 概述

一、基因表达与调控的概念

1.基因:遗传的基本单位或单元;贮存RNA序列信息及表达这些信息所必需的全部DNA序列2.基因组:一个细胞或病毒所携带的全部遗传信息或全套基因,cDNA即与mRNA后部的DNA3.基因表达:基因转录及翻译的过程,对这个过程的调节就是基因表达调控。编码rRNA和tRNA的基因转录产生RNA的过程也叫基因表达。

二、基因表达的时空特异性

1.时间特异性:特定的基因飞表达按一定的时间顺序开启或关机,决定细胞向特定的方向分化和发育 2.空间特异性:如肝细胞能表达葡萄糖-6-磷酸,肌细胞则不能,(1)多细胞生物基因表达的时间特异性又称为阶段特异性。(2)空间特异性又称细胞或组织特异性

三、基因表达的方式

1.组成性表达(基因表达):受启动子或启动子与RNA聚合酶相互作用的影响2.诱导和阻遇表达3.协调表达

四、基因表达调控的生物学意义

1.适应环境、维持生长和增值的需要 2.维持个体发育和分化的需要

第二节 基因表达调控的基本原理

一、 基因表达的调控的多层性和复杂性

1.DNA水平:(1)组蛋白2酰化 (2)DNA去甲基化(3)核酸酶敏感 (4)基因的扩增、重排、丢失

2.RNA水平:(1)转录水平调控 (2)RNA转录后加工及转运 (3)mRNA稳定性

3.蛋白质水平:(1)翻译过程 (2)翻译加工 (3)蛋白质的稳定性

二、基因转录激活调节基本要素

1.特异性DNA序列—启动序列,操纵序列、Pribnow盒、GC序列等2.调节蛋白—阻遏蛋白、激活蛋白、CAP、转录因子

3.DNA-蛋白质,蛋白质-蛋白质的相互作用—改变DNA的结构和RNA聚合酶的功能4.RNA聚合酶:启动序列|启动子对RNA聚合酶活性的影响;调节蛋白对RNA聚合酶活性的影响

第三节 原核基因表达调控

一、原核基因转录调节的特点

1.σ因子决定RNA聚合酶识别特异性2.操纵子机制的普通性3.阻遏蛋白与阻遏机制的普遍性

二、乳糖操纵子的工作原理(转录调控机制)

1.阻遏蛋白的负性调节

(1)在没有乳糖存在时,乳糖操纵子处于阻遏状态。I基因在Pi位启动序列作用下表达的乳糖操纵子阻遏蛋白与O序列结合,阻遏RNA聚合酶与P序列结合,抑制转录启动(2)当有乳糖存在时,乳糖操纵子即可被诱导开放,诱导剂为别乳糖

2.CAP的正确调节(CAP:代谢物激活蛋白)(1)CAP与DNA结合的前提是先与cAMP结合(2)cCAMP浓度降低,乳糖操纵子表达下降3.协调调节 正性调节与负性调节相辅相成,相互协调,相互制约

第四节 真核基因表达调控

一、真核基因组结构特点

1.真核基因住结构庞大,C值矛盾2.单顺反子—一个编码基因转录生成mRNA,经翻译生成一条多肽链3.重复序列

4.基因不连续性—外显子卑内含子分隔

二、真核基因的表达调控特点

1.既有瞬时调控又有发育调控2.活性染色质的变化:①对核糖酶敏感性提高 ②DNA拓扑结构变化 ③DNA碱基修饰变化 ④组蛋白的修饰变化3.正性调节占主导地位4.转录与翻译在时空上的分隔5.转录后加工修饰

三,转录水平的调控

1.调控序列 顺式作用元件——能与特异性转录因子结合,以决定转录的起始位点,转录效率及转录的时空特异性的DNA序列。包括启动子、增强子、沉默子、反应元件(1)启动子:确保转录精确而有效地起始的DNA序列①核心元件是TATA盒-——与RNApolⅡ结合,决定转录起始的精确定位②上游启动子元件:{GC盒、 CAAT盒}-决定基因表达的基础水平

(2)增强子——能增强启动子活性的DNA序列 特点:增强效应有严格的组织和细胞特异性;没有基因专一性;其活性与其在DNA双螺旋结构中的空间方向性有关;受部信号调作用机理:目前已知增强子与蛋白质因子结合后能改变染色质的结构。

2.调控蛋白 反式作用因子-能直接或间接和顺式作用元件相结合,调控靶基因转录效率的蛋白质,也称转录因子 。蛋白质-DNA,蛋白质-蛋白质相互作用是其发挥功能的基础

真核生物调控蛋白分类

①基本(通用)转录因子- 帮助RNApolⅡ与启动子结合说必需的一组蛋白质因子②特异转录因子(转录激活因子、转录抑制因子)-个别基因转录锁必需,决定该基因转录的时间和空间特异性。③共调节因子,通过蛋白质-蛋白质相互作用改变(通用)转录因子或转录因子构象,调控转录。促进的称共激活因子,阻抑的称共阻抑因子。

七、翻译水平的调节:

1.翻译起始的调控

(1)翻译起始因子活性的调控(2)mRNA5’-UTR长度 对翻译的影响(3)阻遏蛋白的调控作用

2.小分子RNA的调控作用

第十六章 细胞信号转导

人体的信号转导主要步骤:特定细胞释放信息物质—信息物质到达耙细胞—与特异受体结合—信号转换—耙细胞产生效应

第十九章、肝胆生化(hepatobiliary biochemistry)

第一节 肝脏结构与功能的关系

肝脏在形态结构方面的特点1.具有两条入肝的血管:肝动脉和门静脉; 2.肝内有丰富肝血窦;3.具有两条输出道路:肝静脉和胆道系统; 4.肝细胞内具有丰富的亚微结构。肝脏的化学组成特点。蛋白质含量高:1.丰富的结构蛋白;2.丰富完备的酶体系。

第二节 肝脏在物质代谢中的特殊作用

一、在糖代谢中作用

1. 进食后: G 合成 肝糖原

2. 不进食或空腹: 肝糖原 分解 G 维持血糖浓度相对恒定

3. 饥饿时: 非糖物质 糖异生 G

二、在脂类代谢中的作用

⒈ 促进脂类的消化吸收 约80%胆固醇 胆汁酸盐

⒉ 肝脏是脂肪酸分解、合成和改造的主要场所 FA 乙酰CoA

加工、改造

3.肝脏是磷脂和脂蛋白的合成场所

VLDL 转运内源性脂肪

各种原料 磷脂

HDL 转运胆固醇(肝外 肝内)

4.肝脏是胆固醇代谢的主要器官 乙酰CoA 胆固醇 (65%)

三、在蛋白质代谢中的作用

⒈肝脏是合成蛋白质的重要器官

(1)肝内蛋白合成量大(2)肝内蛋白更新快(3)肝内可以合成多种血浆蛋白

清蛋白(A)、纤维蛋白原、凝血酶原——只在肝内合成;

aα1、aα2-球蛋白——主要在肝内合成;

b β-球蛋白——较大部分在肝内合成;

正常人:血浆 清蛋白量(A) 35--55g/L

球蛋白量(G) 20--30g/L

A/G比值 1.5--2.5

慢肝、肝硬化患者或长期营养不良:

清蛋白合成量↓↓ 血浆胶渗压↓ 组织间液回流障碍 过多水液潴留在组织间 水肿、腹水;

严重肝病:

凝血因子合成↓↓ 凝血障碍 鼻衄、齿龈出血、皮下出血等。 临床诊断: 凝血时间延长。

严重肝病、慢肝、肝硬化患者:

清蛋白合成↓↓( < 2.5以下 ) 、 β-球蛋白合成↑↑ ——A/G比值倒置<1

临床意义: A/G比值测定, 帮助诊断慢肝、肝硬化

2.氨基酸分解的主要场所1) 约80%的氨基酸在肝内经联合脱氨基作用而分解2) 约85%的NH3在肝内合成尿素,以解除NH3毒

3) 肠菌产生的胺类,主要在肝内代谢转化

四、在维生素代谢中的作用

⒈ 帮助脂溶性维生素的吸收——分泌胆汁(含胆盐)⒉ 肝脏能储存多种维生素——Vit.A、D、E、K和 VitB12

⒊ 肝脏直接参与维生素的代谢过程(Vit.B2、 PP、 B1、 泛酸 B6 )

FAD、 NAD+、NADP+、 TPP、 HSCoA、 磷酸吡哆醛 Vit.D的活化、 b-胡萝卜素 Vit.A

五、肝脏在激素代谢中的作用

1激素发挥作用后 大多在肝内代谢转化、灭活 随胆汁分泌,排出体外。

2肝病时(慢肝、肝硬化):

醛固酮、抗利尿激素 在肝内灭活↓ 使醛固酮、抗利尿激素在血中过多积聚 加强肾对Na+和水的重吸收 引起水、盐在体内过多滞留 水肿、腹水。

3雌激素灭活↓ 出现“蜘蛛痣”或“肝掌”。

第三节 胆汁酸代谢

胆汁(bile)胆汁成分:胆汁酸、胆色素、胆固醇、废物

肝细胞分泌 胆囊浓缩 十二指肠

肝胆汁金黄色 胆囊胆汁暗褐色 促进脂类的消化吸收有助于代谢产物的排泄

二、胆汁酸(bile acid)的种类

游离胆汁酸 (有毒) 结合胆汁酸(无毒)

初级胆汁酸 胆酸 甘氨胆酸、牛磺胆酸 鹅脱氧胆酸 甘氨鹅脱氧胆酸、牛磺鹅脱氧胆酸

次级胆汁酸 脱氧胆酸 甘氨脱氧胆酸、牛磺脱氧胆酸

石胆酸 甘氨石胆酸、牛磺石胆酸

胆汁酸的生理作用:促进脂类的乳化及形成胆汁酸混合微团

降低体内胆固醇,同时避免胆固醇析出而形成结石

胆汁酸的肝肠循环:重吸收的胆汁酸通过门静脉进入肝脏,其中游离胆汁酸重新转化成结合胆汁酸汇入胆汁,随胆汁入肠

第四节 胆色素代谢

胆色素分类:胆红素、胆绿素、胆素原和胆素

1*胆红素(Bilirubin)来源

体内的铁卟啉化合物——血红蛋白、肌红蛋白、细胞色素、过氧化氢酶及过氧化物酶。

※约70%来自衰老红细胞中血红蛋白的分解。

2胆红素的性质:亲脂疏水,对大脑具有毒性作用3胆红素在血液中的转运——胆素-血清蛋白复合物:运输、减毒

4胆红素在肝细胞内的代谢

摄取 复合物与肝细胞膜上的特异受体蛋白Y蛋白(Z蛋白)戊巴比妥诱导合成Y蛋白,用于临床消除新生儿黄疸

转化 在滑面内质网胆红素与2分子UDP-葡萄糖醛酸缩合成二葡萄糖醛酸胆红素,称为结合胆红素或肝胆红素。

排泄 结合胆红素水溶性强,易从肝细胞分泌、汇入胆汁并排入肠道。

5胆红素在肝外的代谢

胆红素在肠道中的转变——胆素原的肠肝循环

肠道:结合胆红素 细菌 游离胆红素 细菌 胆素原(大部分随粪便排出,小部分胆素原进入肝肠循环)

胆红素与重氮试剂的反应:结合胆红素(无分子内氢键)——紫色偶氮化合物——直接胆红素

游离胆红素(分子内氢键) + 乙醇/尿素——间接胆红素

6.胆红素异常代谢:血红素浓度过高,扩散组织黄染——黄疸(显性超过2.0mg/dl,隐性未超过2.0mg/dl)

7.黄疸分类:溶血性黄疸、肝细胞性黄疸、阻塞性黄疸⑴肝前性黄疸(溶血性黄疸)原因:蚕豆病、误输异型血、恶性疟疾、败血症等,红细胞大量破坏产生胆红素过多;特点:未结合胆红素↑(间接反应强阳性)⑵肝原性黄疸(肝细胞性黄疸)原因:肝炎、肝肿瘤、毒物或药物损伤肝细胞等,肝功能减退;特点:未结合、结合胆红素↑(间接、直接反应双阳性)

⑶肝后性黄疸(阻塞性黄疸)原因:胆结石、胆道蛔虫、肿瘤压迫胆管,结合胆红素反流入血;特点:结合胆红素↑(直接反应强阳性)

第五节 肝脏的生物转化作用biotransformation

1非营养物质:体内产生和从体外摄取的某些既不能构建组织,又不能氧化供能物质。

2生物转化:肝脏将非营养物质转化,最终增加其水溶性(或极性),使其易于随胆汁和尿液排出体外,这一过程称为生物转化。

3第一相反应——包括氧化、还原和水解反应 第二相反应——结合反应(葡萄糖醛酸、硫酸、乙酰基、甲基结合反应)

许多非营养性物质 第一相反应 极性改变不大 第二相反应 进一步增加极性 排出体外

4.生物转化的特点 :①反应的连续性和多样性 ②解毒致毒两重性

2023高考一轮复习知识点:高考化学300个知识盲点汇总

向学霸进军特意整理出2023高考一轮复习知识点之高考化学300个知识盲点,希望能够为广大考生提供帮助。

1

1、钝化现象:铁、铝在冷的浓硝酸或浓硫酸中钝化。钝化只在常温下用,加热条件下铁会与浓硫酸反应。

2Fe + 6H2SO4(浓)=Fe2(SO4)3+ 3SO2↑ + 6H2O 钝化是指活泼金属在强酸中氧化表面生成一层致密的氧化膜组织金属进一步反应。

2、浓盐酸、浓硝酸,在离子方程式中拆开,浓硫酸不拆开。

3、在离子方程式中,澄清石灰水要拆开写成离子,浑浊石灰乳不拆。

4、有阴离子必有阳离子,有阳离子未必有阴离子,如金属中只有自由电子。

5、氢氧化钠与乙醇不反应。

6、阿伏伽德罗常数考点陷阱有:未告知体积,如PH=1的盐酸溶液中,氢离子的个数为0.1NA。

7、苯中无C=C双键。

8、碳酸钠俗名是纯碱、苏打,显碱性但不是碱,是盐。(稳定)

9、小苏打是碳酸氢钠,加热分解成碳酸钠、二氧化碳和水。(不稳定)在推断题中会出。

2

10、醋酸、苯酚、水、乙醇,分子中羟基上氢原子的活泼性依次减弱。故,氢氧化钠与乙醇不反应。

11、碱金属元素的熔沸点是原子半径越大熔沸点越低;卤素单质是分子晶体,靠范德华力结合,范德华力大小与分子量有关,分子量越大范德华力越大,熔沸点也就越高。碱金属元素是金属晶体,结合键是金属键,原子半径越小原子核间的引力越强,越难破坏,熔沸点越高。#随着核电荷数的递增,熔沸点逐渐降低(与卤素、氧族相反)

12、锂与氧气反应只生成氧化锂,钠在常温生产氧化钠,加热或完全燃烧生成过氧化钠。

13、碱金属的特殊性:锂的密度比煤油小,不能保存在煤油中,通常密封在石蜡里,钠的密度比水小,比煤油大。

14、碱金属的密度由锂到铯逐渐增大的趋势,但是有反常的钠密度比钾的大。

15、酸式盐的溶解度一般比相应的正盐大,但是碳酸钠比碳酸氢钠的溶解度大。

16、煤的干馏是化学变化,蒸馏和分馏是物理变化。

17、蛋白质的变性是化学变化,盐析是物理变化。

18、碱性氧化物一定是金属氧化物,金属氧化物不一定是碱性氧化物。Mn2O7是金属氧化物,但它是酸氧化物,其对应的酸是高锰酸,即HMnO4。

19、酸性氧化物不一定是非金属氧化物(如Mn2O7),非金属氧化物也不一定是酸性氧化物(如H2O、CO、NO)。

20、酸性氧化物大多数能溶于水并与水反应生成对应的酸,记住二氧化硅(SiO2)不溶于水。碱性氧化物的概念:能跟酸起反应,生成盐和水,且生成物只能有盐和水。

3

21、氧化性:Cl2>Br2>Fe3+>I2>S;还原性:碘离子>亚铁离子>溴离子>氯离子

22、22.4L,一定是标况下,气体,四氯化碳、苯、水、酒精、三氧化硫、碳原子数大于4的烃(新戊烷在标况下是气体)都不是气体,且记得混合时是否反应比如NO和O2。

23、次氯酸是弱电解质,离子方程式不拆开。

24、随着反应的进行,浓会逐渐变稀,故不能进行到底,比如二氧化锰与浓盐酸反应。

25、水玻璃为硅酸钠等易容性硅酸盐的混合物。

26、银氨溶液配制方法:在AgNO3溶液中加入稀氨水

AgNO3 + NH3.H2O = AgOH↓+NH4NO3

接着加稀氨水:AgOH + 2NH3.H2O =Ag(NH3)2 OH + 2H2O ,到沉淀刚好溶解停止.

27、偏铝酸根与氢离子反应:如果是H+少量发生 H+ + H2O + AlO2-=Al(OH)3 ↓ 如果是大量H+ 那么 AlO2- +4H+=Al3+ + 2H2O

28、泡沫灭火器的反应原理:双水解的应用:Al2(SO4)3+6NaHCO3==3Na2SO4+2Al(OH)3↓+6CO2↑

29、苯酚钠与二氧化碳,无论二氧化碳通过多少,只生产碳酸氢钠,C6H5ONa+CO2+H2O==C6H5OH+NaHCO3。

30、苯酚才能与碳酸钠反应:

C6H5-OH + Na2CO3 --→ C6H5-ONa + NaHCO3

这个反应能发生,是因为苯酚酸性强于碳酸氢根。苯酚钠只能与二氧化碳反应:

C6H5-ONa + CO2 + H2O --→ C6H5-OH + NaHCO3

该反应能发生,因为碳酸酸性强于苯酚。

4

31、磷与氯气反应,氯气充足生成五氯化磷,氯气不足生成三氯化磷。

32、白磷分子式为P4、分子晶体,故12.4g白磷含有磷原子数目为0.4NA。

33、Cl2与足量Fe反应,无论铁过量还是未过量,只生成氯化铁,只有溶液中铁才与氯化铁反应生产氯化亚铁。

34、Al3++ 3 AlO2- + 6 H2O =4 Al(OH)3↓

35、过量二氧化碳通入水玻璃中反应为:

2H2O+2CO2+Na2SiO3=2NaHCO3+H2SiO3↓,二氧化碳不过量生成碳酸钠。

36、比较半径大小:(1)层数相同,核大半径小(2)层异,层大半径大(3)核同,价高半径小,例如铁大于二价铁大于三价铁(4)电子层结构相同,核电荷数越大,半径越小。

37、C是形成化合物最多的元素、单质是自然界中硬度最大的物质元素或气态氢化物中氢的质量分数最高的元素。

38、元素气态氢化物能和它的氧化物在常温下反应生成该元素单质的是S。这是高中很重要的化学反应,也是唯一体现二氧化硫具有氧化性的反应。 2H2S+SO2=2H2O+3S

39、元素的气态氢化物和它的最高价氧化物对应的水化物能反应生成盐的元素为N。

40、单质在常温下呈液态的非金属元素为Br.单质在常温下呈液态的金属元素为:Hg。

5

41、合金是混合物,性能往往优于其成分的金属,比如:硬度比它的各组分金属硬度大,合金的熔点比它的各组分熔点要低。

42、3Mg+N2==Mg3N2 2Mg+CO2==C+2MgO(条件都是点燃,别忘记哦,在物质的量中会出,如果认为镁与氮气不反应就是错的哦)

43、生铁、普通铁、不锈钢含碳量依次降低。生铁:生铁是含碳量大于2%的铁碳合金,钢:钢是含碳量在0.04%-2.3%之间的铁碳合金,不锈钢是Fe、C、Cr合金,Fe含量大约为74.6%。

44、明矾净水的原因是利用水解原理,原理是明矾在水中可以电离出两种金属离子: KAl(SO4)2 = K+ + Al3+ + 2SO42-而Al3+很容易水解,生成胶状的氢氧化铝Al(OH)3: Al3+ + 3H2O = Al(OH)3(胶体)+ 3H+ 氢氧化铝胶体的吸附能力很强,可以吸附水里悬浮的杂质,并形成沉淀,使水澄清。

45、铁或者铝制成可以密封贮运浓硫酸或者是浓硝酸,是因为铁和铝不能与浓硫酸和浓硝酸反应。错,不是不反应,钝化是浓硫酸和浓硝酸把铁和铝表面氧化,生成致密氧化物,阻止了金属与浓酸的接触。

46、金属铝与强碱溶液的反应,水做氧化剂。不是氢氧化钠。2Al + 2NaOH + 2H2O = 2NaAlO2 + 3H2↑

47、镁在二氧化硫中燃烧与在二氧化碳中相似,生成氧化镁和单质硫,但是生成的硫能继续与镁反应,生成硫化镁。2Mg+SO2==2MgO+S Mg+S==MgS 条件都是点燃

48、铝热反应:氧化铁:

2Al+Fe2O3=Al2O3+2Fe

四氧化三铁:8Al+3Fe3O4=4Al2O3+9Fe

二氧化锰: 4Al+3MnO2=2Al2O3+3Mn (反应条件都为高温)铝热反应的应用:用于冶炼稀有金属、野外焊接铁轨、定向爆破。

49、铝热反应的重点:

(1)铝热反应常用于冶炼高熔点的金属,并且它是一个放热反应,其中镁条为引燃剂,氯酸钾为助燃剂。

(2)原理:铝热反应的装置中铝热剂在最下面,上面铺层氯酸钾,中间插根镁条.反应时先点燃镁条,高温使氯酸钾分解产生氧气,这样又促进镁条燃烧.镁条燃烧产生大量热,因为铝热反应需高温条件,这样反应就得以进行。

50、元素金属性强弱的判断方法:

(1)与水或酸反应置换氢的难易

(2)最高价氧化物对应水化物的碱性强弱。

(一定是最高价哦,选择题中会出,陷阱是去掉最高价)

(3)单质的还原性或离子的氧化性

(4)单质间的置换反应。

(5)电化学原理

(6)元素在周期表中的位置。

6

51、电化学记住几点:原电池:负氧,负负正正(解释什么意思呢,就是负极发生氧化反应,阴离子往负极移动,阳离子往正极移动,一般考试出选择题,只要判断出谁做负极,它一定是发生氧化反应,记不住就这么记娃哈哈不是新推出一款水叫做富氧水吗)哈哈电解池:电解池记住:阳氧,就是阳极发生氧化反应,阴离子向阳极移动,阳离子向阴极移动。

52、电化学的考点主要集中几点:(1)判断谁做负极、正极(2)离子移动方向(3)发生什么反应(4)电流移动方向(5)电子移动方向(6)转移电子数目(7)正负极方程式(8)氢氧燃料电池(9)电化学腐蚀(主要是吸氧腐蚀)(10)精炼铜、氯碱工业等。

53、记住原电池和电解池可不是可逆反应,可逆反应是同一状态下,也就是条件相同,而电解池和原电池一个有外接电源一个没有。

54、二氧化碳电子式一定会写,不能写错。

55、记不记得硅也可以与氢氧化钠反应:Si+2NaOH+H2O==Na2SiO3+2H2(气体),不单单只有铝,看题眼怎么说的,如果是金属就是铝,非金属就是硅。

56、原电池可以理解为保护的是正极,而电解池可以理解保护的是阴极。所以精炼铜或者是电镀,粗铜做阳极,你总不能把粗铜做阴极给保护起来吧,镀层做阳极,镀件做阴极。

57、氢氟酸能够溶解很多其他酸都不能溶解的玻璃(二氧化硅)反应方程式如下: SiO2(s) + 4 HF(aq) → SiF4(g) + 2 H2O(l)

58、碘单质遇淀粉变蓝,而不是碘化钾中的碘元素。做题中经常会忘记,比如碘盐中的碘可以直接用淀粉检验,这句话是错误的。

59、氢氧化铝和碳酸氢钠都可以用来治疗胃酸过多,切忌不可用碳酸钠哦。

60、发酵粉主要成分是小苏打,是碳酸氢钠,不是碳酸钠哦。

7

61、金属锂在空气中燃烧只生成氧化锂,没有过氧化物产生。

62、二氧化硫、二氧化碳不与氯化钙、氯化钡反应,比如考题中说将二氧化硫通入氯化钡溶液中可生成亚硫酸钡。是错误的。可以这么记忆:碳酸钙与盐酸反应生成的是氯化钙、二氧化碳和水,这个反应不是可逆。或者是弱酸不能制强酸。

63、漂失效的原理方程式:漂的主要成分是次氯酸钙和氯化钙,次氯酸钙和空气中的二氧化碳和水蒸气反应生成碳酸钙和次氯酸,次氯酸见光分解生成氯化氢和氧气。因为次氯酸才有漂白效果,所以次氯酸分解之后就失效了。Ca(CIO)2+CO2+H2O=CaCO3+2HCIO 2HCIO=2HCI+O2

64、见光分解和受热分解的物质要记住哦。见光分解的物质:硝酸、碘化银、溴化银、氯化银、次氯酸。碳酸氢钠是加热才分解。

65、见光分解和受热分解的物质要记住哦。见光分解的物质:硝酸、碘化银、溴化银、氯化银、次氯酸。碳酸氢钠是加热才分解。

66、氧化还原反应:不仅要会判断化合价的变化,还要会判断还原产物和氧化产物、氧化剂和还原剂。技巧:升失氧化还原剂对应氧化产物;降得还原氧化剂对应还原产物。或者记住:还原剂对应氧化产物,氧化剂对应还原产物。(氧化剂、还原剂说的是反应物,还原产物和氧化产物只的是生成物。)

67、选择题会出:C6H6O(苯酚) + O2 生成C6H4O2 (苯醌kun) +H2O这就是苯酚在空气中变成粉红色的原因。

68、淀粉和纤维素虽然都符合通式(C6 H10 O5)n,都是碳水化合物记住二者不是同分异构体,因为n值不同。

69、淀粉、纤维素、蛋白质、蚕丝、天然橡胶都是高分子化合物,但是油脂不是。合成有机高分子化合物(如聚乙烯、聚氯乙烯、有机玻璃、合成纤维、合成橡胶等)

70、一定量的过氧化钠与一定量的二氧化碳和水蒸气反应,可视作先与二氧化碳反应,待二氧化碳反应完全,再与水反应。

8

71、过氧化钠与二氧化碳和水反应,可理解为吸收了二氧化碳中的CO,水中的H2。例如:全国高考题:取a g某物质在氧气中完全燃烧,将其产物跟足量的过氧化钠固体完全反应,反应后固体的质量恰好也增加了a g。下列物质中不能满足上述结果的是()

A.H2 B.CO C.C6H12O6 D.C12H22O11解析:A氢气燃烧生成水,过氧化钠与水反应相当于吸收了水中的氢气,正好符号前后质量不变。B一氧化碳燃烧生成水,过氧化钠与水反应相当于吸收了二氧化碳中的CO,故正确。C可以将其变式6(CO)6(H2),就可以参考AB了。D选项,就不符合了。

72、铁与水蒸气高温反应,不写气体符号。3Fe+4H2O==Fe3O4+2H2

73、木炭与浓硫酸、浓硝酸均生成二氧化碳。C+2H2SO4(浓)=CO2↑+2SO2↑+2H2O;C+4HNO3(浓)=CO2(气体)+4NO2(气体)+2H2O

74、将钠、镁、铝各0.3mol分别放入100mL1mol·L-1的盐酸中,同温同压下产生的气体体积比是()

A.1∶2∶3 B.6∶3∶2 C.3∶1∶1 D.1∶1∶1解析:正确答案选C。别忘记钠过量会与水反应放出氢气,而铝和镁不能与水反应,且二者过量,只能用盐酸的量计算生成氢气的量。

75、汇集九到高考原题,关于离子共存问题,这个考点就出现三回,是什么呢?就是二价铁离子、氢离子、硝酸根离子不能共存,因为二价铁离子会被氧化成三价铁离子。

76、铵根离子可以与氢离子共存,偏铝酸根可以与氢氧根共存。或者这么记也可以(偏铝酸根离子不能与氢离子,弱碱根离子共存。铵根离子不能与氢氧根离子,弱酸根离子共存。)

77、烃的定义是仅有碳氢两种元素组成的有机化合物叫碳氢化合物又称为烃。烃按照碳骨架的形状可以分为链烃(开链脂肪烃)和环烃。童鞋要记住:汽油、柴油、和植物油他们都是混合物,不符合烃的定义,像是溴乙烷也不是烃,因为含有溴元素,只能叫做烃的衍生物。

78、烃分子里的氢原子能被其它原子或原子团所取代而生成别的物质,叫做烃的衍生物。如一氯甲烷、硝基苯等。

79、选择题中经常考的:

乙烯和苯加入溴水中,都能观察到褪色现象,原因是都发生了加成反应。(错误)

解释:(1)苯不能与溴水反应。苯只能和液溴反应(在溴化铁催化下进行)。(2)液溴和溴水的区别,液溴是纯净物,溴水是混合物。(3)苯和溴水混合振荡后,可以把溴萃取到苯中,无机层接近无色,有机层呈橙色,但是没发生任何反应。乙烯是溴水褪色是发生加成,因为有双键。(4)四氯化碳和苯都可以作为萃取剂,但是二者现象不同,苯比水轻,故颜色在上层,下层物色,而四氯化碳比水重,故上层无色、下层有颜色。一个题,我们总结出很多考点哦,童鞋要记住哦。

80、醇氧化成醛氧化成酸,醛可以还原成醇。而酸不能还原成醛。

9

81、焰色反应是物理变化。为什么?因为电子的突跃,原子内发生变化,原子和分子没有发生变化。

82、钢铁在海水中比在河中更容易被腐蚀,主要是因为海水含氧量高。(错误)解析:记得为什么铁和稀硫酸反应中加硫酸铜后,反应速率变快,就是因为铜和铁可以形成原电池,这个题是一样的原理,海水含盐量比和河水中高,易形成原电池,更以腐蚀。

83、电化学腐蚀典型案例记住就是铁的吸氧和吸氢腐蚀。(1)这个反应构成的是原电池而不是电解池。(2)在酸性条件下,发生吸氢腐蚀:负极反应 Fe-2e-=Fe2+正极反应 2H++2e-=H2↑总反应 Fe+2H+=Fe2++H2↑(3)在中性或者是弱酸性条件下,发生吸氧腐蚀负极:Fe-2e-=Fe2+正极:2H2O+O2+4e-=4OH-

2Fe+2H2O+O2=2Fe(OH)2 (或)

4Fe(OH)2+O2+2H2O=4Fe(OH)3

(4)应该说考试主要考吸氧腐蚀。

84、化学腐蚀:直接反应。电化学:构成原电池,有电流。

85、离子方程式正误判断:

(1)碳酸氢钠溶液与少量石灰水和过量石灰水反应方程式不同(记住符合少量原则,就像管理学中木桶理论,装水多少取决于左短的板子)

石灰水少量离子方程式为:

2HCO3-+2OH-+Ca2+=CaCO3(沉淀)+CO32-+2H2O

石灰水过量离子方程式为:

HCO3-+ Ca2+ +OH-=H2O+CaCO3沉淀符号

(2)碳酸钙、碳酸镁、碳酸钡,离子方程式中不拆开,这个会经常忘记。

(3)石灰乳与Na2CO3溶液混合:Ca2++CO32-=CaCO3(错误)石灰乳不拆开。(4)碳酸钡与硫酸反应:Ba2++SO42-===BaSO4↓(错误,碳酸钡不拆开)

(5)硫酸铜与烧碱反应:CuSO4+2OH-===Cu(OH)2↓+SO42-(错误,硫酸铜应拆开)

(6)稀硝酸与过量的铁屑反应3Fe+8H++2NO3- = 3Fe3++2NO↑+4H2O(错误),离子方程式是正确,但是过量的铁会与三价铁反应生产二价铁。

(7)澄清石灰水与少量苏打溶液混合:Ca2+ + OH-+HCO3- = CaCO3↓ + H2O

(8)(错误,这个题第一眼会认为是正确的,也符合按少量配比关系,但是苏打是碳酸钠,小苏打才是碳酸氢钠,这是全国高考真题哦)

(9)氯化铝溶液中加入过量氨水:Al3+ + 4NH3•H2O = AlO2- + 4NH4+ + 2H2O(错误,这个考点考了好几年。就是氢氧化铝沉淀不溶于氨水)

(10)向沸水中滴加FeCl3溶液制备Fe(OH)3胶体:Fe3++3H2O_____(△)Fe(OH)3↓+3H+(错误,胶体不标沉淀符号,也是好几年的考点)

(11)少量金属钠加到冷水中:Na+2H2O = Na++OH-+H2↑(错误,亲们第一眼看,是不是会认为正确,电荷也守恒,生成物反应物都正确,但是质量不守恒啊)所以记住,判断离子方程式正确与否可以先看拆不拆,都正确后看电荷、质量守恒)

(12)用醋酸除去水垢:CaCO3 + 2H+==Ca2+ + H2O + CO2↑(错误,醋酸弱电解质,不拆开)

(13)氯气与水反应:Cl2+H2O=2H++Cl-+ClO-(错误,生成次氯酸弱电解质不拆开)

(14)醋酸钠的水解反应CH3COO-+H3O+=CH3COOH+H2O(错误,这个题变形很多。亲们记住水合氢离子可以拆成水和氢离子,所以题中两侧水约掉,变成醋酸很离子和氢离子结合成醋酸分子)

(15)往氨水中滴加氯化铝溶液:Al3++4OH-=AlO2-+2H2O(错误,和(9)解释一样)亲们,这个是我总结05-08高考题中离子方程式所遇到的部分考点,融会贯通,多做些练习、多总结)

86、在稀溶液中,酸跟碱发生中和反应生成1 mol水时的反应热叫做中和热。

(1)必须是酸和碱的稀溶液,经常出题会出浓硫酸与氢氧化钠反应生成一摩尔水,不是中和热,因为浓硫酸溶于水,会放出大量的热,一定要记住。因为浓酸溶液和浓碱溶液在相互稀释时会放热。

(2)弱酸或弱碱在中和反应中由于电离吸收热量,其中和热小于57.3 kJ·mol-1;(3)以生成1摩尔水为基准,因此书写它们的热化学方程式时,水的系数必为1

87、燃烧热:在101 kPa时,1 mol纯物质完全燃烧生成稳定的氧化物时所放出的热量,叫做该物质的燃烧热。 (1)可燃物物质的量为1 mol,因此在计算燃烧热时,热化学方程式里其他物质的化学计量数常出现分数:如H2(g)+1/2O2(g)====H2O(l);ΔH=-285.8 kJ·mol-1 (记住热量和系数是有比例关系的,同时除以2 ,热量也要除以2)

(2)单质或化合物必须是完全燃烧,如反应物中碳要生成二氧化碳非一氧化碳,水的状态是液态非气态。 书写热化学方程式、要记住状态必须标明,看好题中是写燃烧热还是中和热,记清楚中和热和燃烧热的区别,ΔH=-,表示正向是放热反应,ΔH=+表示正向是吸热反应(+,—号必须标明,不可省略),记住单位不要忘记,也不要写错。

88、淡黄色的AgBr,黄色的AgI。

89、亚硫酸根离子和氯水反应为什么会生成气体。 Cl2+SO3 2- +H2O=SO4 2- +2HCl ,亚硫酸根离子没反应完全,又和反应产物盐酸会生成SO2二氧化硫气体。(所以氯水不能和亚硫酸根共存,会氧化成硫酸根离子也可能会有气体生成)

90、高考选择题:将二氧化硫通入酸性高锰酸钾溶液中,紫色退去,是因为二氧化硫具有漂白性。(错误,是利用高锰酸钾具有强氧化性)

10

91、钠考试专题:钠的密度比钾大。所以随着核电荷数荷数的增加,密度逐渐增大吗,就是错误的。

92、做钠这部分题别忘记差量法,极值法和守恒法。例如高考真题:(07全国卷II)在一定条件下,将钠与氧气反应的生成物1.5 g溶于水,所得溶液恰好能被80 mL浓度为0.50 mol/L的HCl溶液中和,则该生成物的成分是( )

A.Na2O

B.Na2O2

C.Na2O和Na2O2D.

Na2O2和NaO2这道题就是应用了钠守恒,亲们想是不是这么一个主线,钠——钠的氧化物——氢氧化钠——氯化钠(钠来自于固体钠),通过氢氧化钠与盐酸恰好完全反应,计算出氯化钠的物质量为0.04摩尔。假设:钠与氧反应全部生成氧化钠,那么氧化钠是0.02摩尔,所以氧化钠的固体质量为0.02*62=1.24g.若生成物全部为过氧化钠,那么过氧化钠的物质的量为0.02摩尔,质量为0.02*78=1.56g,由于生成物为1.5g,分析必为二者混合物。

93、钠是一种银白色固体、铁也是银白色固体,不是黑色。铜是紫红色。

94、碳酸氢钠加热客体分解为碳酸钠、水、二氧化碳。

95、泡沫灭火器的应用,硫酸铝和碳酸氢钠,双水解,生成氢氧化铝和二氧化碳和水。

96、钠与酸反应,当钠剩余时别忘记还会与水反应。

97、钠与盐溶液反应,先考虑钠与水反应,再考虑氢氧化钠与盐的反应。比如钠投入硫酸铜溶液。

98、观察钾的焰铯反应,透过蓝色钴玻璃片,因为钾中混有钠的杂质,蓝色钴玻璃可以滤去黄光。

99、配置稀硫酸溶液,记住是将浓硫酸注入水中,并用玻璃棒不断搅拌。2011年广东高考题

100、侯氏联合制碱法的三个化学方程式:(2012江苏高考题,一个选择题知识点)即

:NaCl(饱和)+NH3+H2O+CO2=

NH4Cl+NaHCO3↓2NaHCO3=

加热=Na2CO3+H2O+CO2↑

(1)向浓氨水中通入足量CO2生成碳酸氢铵

NH3 +H2O +CO2 = NH4HCO3 (2)再加入食盐细末搅拌

NH4HCO3 +NaCl = NH4Cl +NaHCO3 (析出)

碳酸氢铵与氯化钠反应生成一分子的氯化铵和碳酸氢钠沉淀,碳酸氢钠之所以沉淀是因为他的溶解度很小。(

3)碳酸氢钠加热 2NaHCO3 =

Na2CO3 +H2O +CO2 (气体)

11

101、镁可以与二氧化碳反应,2Mg +CO2=2MgO+C条件点燃,这是推断题常考考点,一个金属和一气体反应,生成一黑色物质和白色物质。氧化镁是白色的,碳是黑色的。反应现象是剧烈燃烧,生成白色粉末和黑色固体。

102、煤的干馏是化学变化,石油的裂化也是化学变化。(长链烃断为短链烃)选择题经常出

103、记住硫在过量的氧气中充分燃烧生成二氧化硫不是三氧化硫。(选择题中,关于物质的量会考,求转移电子数目,二氧化硫在催化剂的作用下,才会与氧气生成三氧化硫)

104、氮气与氧气在放电条件下生成一氧化氮。

105、铁、铜等变价金属与硫反应时生成低价化合物(硫化亚铁、硫化亚铜)。而与氯气反应时生成其高价化合物。

106、SO2能使品红褪色,加热时又能恢复成原色,说明二氧化硫具有漂白性。

107、二氧化硫不能漂白酸碱指示剂,如把二氧化硫通入紫色石蕊试液中,溶液变红。

108、我们再记一遍,二氧化硫使品红褪色是因为二氧化硫具有漂白性,使高锰酸钾溶液褪色是利用二氧化硫的还原性。

109、若向品红溶液中通入等物质量的氯气和二氧化硫,不是强强联手而是两败俱伤,发生反应,Cl2+SO2+2H2O=H2SO4+2HCl,品红不褪色。若向紫色石蕊溶液中通入等物质量的氯气和二氧化硫,变红色(不褪色)。

110、PH<5.6,才是酸雨,记住不是PH<小于7就叫做酸雨。

12

111、浓硫酸不能干燥氨气、硫化氢、碘化氢气体。

112、记住几个常见的硫酸盐:明矾(很重要,十二水硫酸铝钾)重晶石(硫酸钡)绿矾(七水硫酸亚铁)胆矾(五水硫酸铜)芒硝(十水硫酸钠)

113、模拟题选项:PH在5.6-7.0之间的降水通常被称为酸雨。(错误,参考114)

114、氯化铁溶液能与铜反应,可用于蚀刻印刷电路。

(正确,考了好几年的题在离子方程式里,利用腐蚀法制作印刷线路板:Fe3+ + Cu == Fe2+ + Cu2+(电荷不守恒,童鞋如果做离子方程式06-08年高考真题,这个点大概考了至少3次)

115、关于原电池正负极方程式书写小窍门:

(1)个人是这么记住的,记住一个通式就是2H2O + O2 + 4e- = 4OH-(这个方程式既是吸氧腐蚀的正极,又是氢氧燃料电池碱性电解质的正极方程式)

(2)若氢氧燃料电池为酸性电解质:负极:2H2 - 4e- = 4H+(生成的氢离子在酸性条件下可以存在)正极我们看通式(生成氢氧根离子不能在酸性条件下存在,左右各加4个氢离子氢离子,4H++2H2O + O2 + 4e- = 4OH-+4H+,左右约掉两摩尔水,O2+4H+ +4e- = 2H2O

(3)若氢氧燃料电池为碱性电解质:负极:2H2 - 4e- = 4H+(生成的氢离子在碱性条件下不可以存在,左右需要各加4个氢氧根离子4OH-+2H2 - 4e- = 4H+4OH-,合并为:2H2+4OH- -4e- = 4H2O正极就是通式,记住了吗?(其实我们只需要记住2H2O + O2 + 4e- = 4OH-这个通式,分析氢氧燃料电池是酸性还是碱性电解质,然后左右需要各加4个氢离子还是4个氢氧根离子,对不)

116、外形上的主要区别:蒸馏烧瓶在瓶颈处有一略向下伸出的细玻璃管,而圆底烧瓶则无此装置。

117、SO32-与MnO4-无论酸碱性如何,都不能大量共存(SO2与SO32-中S的化合价相同,还原性也相似)。

118、酸性:2MnO4- + 5SO32- + 6H+ ==2Mn2+ + 5SO42- + 3H2O近中性:2MnO4- + 3SO32- + H2O == 2MnO2 + 3SO42- + 2OH-碱性:2MnO4- + SO32- + 2OH- == 2MnO42- + SO42- + H2O有3种情况。

119、高锰酸钾与二氧化硫反应:2KMnO4+5SO2+2H2O=2MnSO4+2H2SO4+K2SO4

120、标准状况下,33.6 L氟化氢中含有氟原子的数目为1.5NA(错误,标况为液体)

13

121、沸水中滴加适量饱和FeCl3溶液,形成带电的胶体,导电能力增强。(错误,胶体粒子可以带电荷,但整个胶体呈电中性)

122、甲烷燃料电池:记住还是通式一般情况甲烷燃料电池都是碱性电解质(生成的二氧化碳气体会溶于碱生成碳酸根)

负极:CH4+10OH--8e-=CO3²-+7H2O

正极:2O2+4H2O+8e-=8OH-

总方程式: CH4+2O2+2OH-=CO3²-+3H2O

记住写燃料电池方程式可以用总的方程式减去简单的方程式就是另一极的方程式,

归根到底还是要记住通式2H2O + O2 + 4e- = 4OH-)若燃料电池为酸性电解质呢,

还是以甲烷燃料电池为例:(正极方程式在通式基础上左右各加4个氢离子)

负极:CH4+2H2O-8e-=CO2+8H+(总反应方程式减去正极反应方程式)

正极:2O2+8H++8e-=4H2O(通式基础上左右加4个氢离子,再配成8e,左右各乘以2)

总CH4+2O2=CO2+2H2O

123、医用酒精;通常为75%。

124、血液是一种胶体,血液透析利用胶体性质,透析利用半透膜原理,胶体不能透过半透膜,溶液可以透过。

125、记住:沉淀的转化是由一种难溶物质转化为另一种难溶物质的过程。

126、核素是指具有一定数目质子和一定数目中子的一种原子。(有例子,就是发不上来呀)

127、工业上用氯气和熟石灰制取漂。

128、工业制备氯气可以通过电解食盐水,或者电解融熔的氯化钠固体。实验室采取的是二氧化锰与浓盐酸反应。记住:看题中怎么问的,是写工业的还是实验室的。(推断题中经常会有一个是我们熟悉但是很容易忘记的方程式,2014年全国大纲无机推断i题就是有一个浓盐酸与二氧化锰的,童鞋一定认真分析,同时书上要求的方程式也要熟记,尤其是不常用的,还有镁与二氧化碳反应,铁与水蒸气反应。)

129、二氧化碳与偏铝酸根反应:

CO2少量:2AlO2- + CO2 + 3H2O = 2Al(OH)3 ↓+ CO32-

CO2过量:AlO2-+CO2+2H2O=A(OH)3↓+HCO3-

130、稀有气体是单原子分子,分子中没有化学键。

14

131、氨气与氯化氢气体,产生白烟,可用于检验氨气,考试题眼。

132、氨:分子构性:三角锥形,二氧化碳:直线型。

133、二氧化碳、过氧化钠、碳化钙,一定会书写电子式。

134、氨气与氯化氢气体,产生白烟,可用于检验氨气,考试题眼。

135、氨:分子构性:三角锥形,二氧化碳:直线型。

136、二氧化碳、过氧化钠、碳化钙,一定会书写电子式。

137、非金属性越弱的氢化物稳定性越差。

138、化学平衡常数:aA+bB=cC+Dd记住平衡常数等于:ccdd./aabb(明白我要表达的意思吗,实在是太难打了)

139、化学平衡常数只与温度有关,与浓度无关。

140、反应物或生成物中有固体或者是纯液体存在时,由于其浓度可以看做是1而不代入公式。

15

141、若升高温度,平衡常数(K)增大,则正反应为吸热反应,值减小。则正反应为放热反应。

142、碳铵:氨气、二氧化碳、水,1:1:1生成碳酸氢铵(俗称碳铵)(2010年高考重庆卷)

143、滴定管分酸式滴定管碱式滴定管区别;

(2012年重庆高考选择考点)酸式滴定管-------玻璃活塞-------量取或滴定酸溶液或氧化性试剂。碱式滴定管-------橡胶管、玻璃珠-------量取或滴定碱溶液。刻度上边的小(有0刻度),下边的大。精确度是百分之一。即可精确到0.01ml下部尖嘴内液体不在刻度内,量取或滴定溶液时不能将尖嘴内的液体放出。

144、对于恒容容器,通入稀有气体,由于容器的体积不变,各组分的浓度保持不变,故反应速率保持不变,平衡也即不移动。若为恒压容器,通入稀有气体,容器的体积膨胀,对于反应则相当于减压。(经常考)

145、苯环上有-OH才能使FeCl3显紫色。(2010高考化学重庆卷)

146、一氧化氮实验室只能用排水法收集。(与空气中的氧气反应,不能用排空气法)

147、一氧化碳只能用排水法,因为一氧化碳难溶于水,密度与空气相差不大且有毒。

148、常形成氢键的元素是N、O、F。

149、将二氧化碳通入饱和碳酸钠溶液中,溶液变浑浊或有晶体吸出,说明碳酸氢钠的溶解度小于碳酸钠,方程式就是二氧化碳、水、碳酸钠反应生成碳酸氢钠。

150、推断题题眼:A的气态氢化物可与其最高价含氧酸反应生成离子化合物,A为氮元素。(2013山东高考)

151、A单质在暗处与氢气剧烈化合并发生爆炸,则A为氟气。(2013年广东高考)

16

152、电化学专题知识:

电解池

(1)电解池中惰性物质作电极,电极不介入反应。(石墨、铂等)

(2)电解池中金属做阳极要参与反应。

(3)阳极发生氧化反应,阳离子往阴极移动,阴离子往阳极移动。

(4)电镀铜:铁上镀铜,铁做阴极(镀件),铜做阳极(镀层),电镀液:含有镀层阳离子(浓度不变)

(5)精炼铜:粗铜做阳极,精铜做阴极。(阳极质量减少与阴极质量增加不相等,粗铜溶解会有锌离子、铁离子等,在关于物质量选择中经常出,转移2mol电子,阳极溶解的质量大于64g,记得不)

(6)记住二次电源,放电时候正极对应充电的阳极,放电的负极对应充电的阴极,做题经常用)

原电池:

(1)电子沿导线流动,从负极出,电流是正极到负极。(虽然知道这个知识点,做题经常出错,说电子进入溶液(错误))(2)负氧,负负正正。(负极发生氧化反应,阴离子往负极移动,阳离子往正极移动)(3)氢氧燃料电池,记住通式。(4)钢铁腐蚀:吸氧析氢。

金属的电化学保护:

(1)牺牲阳极的阴极保护法(原电池原理),让被保护的金属做正极,用比被保护金属活泼性较强的金属做负极。

(2)外加电流的阴极保护法(电解池原理),让被保护金属做阴极。

外加记住:一次电池(锌锰电池)了解就可以,有一年高考题出了一种新电池,这种电池反应类似锌锰电池,

至少我们记得锌锰电池的负极反应方程式就可以

负Zn + 2OH- -2e-====Zn(OH)2

正2H2O + 2MnO2 +2e- ====2MnO(OH)+2OH-

二次电源:(铅蓄电池)充电和放电不是可逆。

放电:铅蓄电池的两极是Pb和PbO2,

电解质溶液是H2SO4,

总的电池反应是:

Pb+PbO2+2H2SO4=2PbSO4+2H2O (放电、充电)

负极Pb:Pb+SO42--2e-= PbSO4

正极:PbO2+4H++SO42-+2e-=PbSO4+2H2O

充电:

阴极:PbSO4+2e-=Pb+SO42-

阳极:PbSO4+2H2O-2e-=PbO2+4H++SO42-

153、木炭与浓硫酸、浓硝酸均生成二氧化碳。C+2H2SO4(浓)=CO2↑+2SO2↑+2H2O;C+4HNO3(浓)=CO2(气体)+4NO2(气体)+2H2O(条件是加热)

154、原电池和电解池综合的题,思维定势(一般出题也是可逆符号上方表示放电为原电池,下方表示充电电解池,但是一定注意有时考题上方表示电解池下方表示原电池。(认真读题,07高考天津出过)

155、正盐定义:既不含能电离的氢离子,又不含氢氧根离子的盐。 正盐是酸和碱完全中和的产物,但正盐的水溶液不一定显中性,如Na2CO3(碳酸钠)溶液显碱性,(NH4)2SO4(硫酸铵)溶液显酸性。(电化学考试也用到过这个知识点)

156、各种常数化学平衡常数:(前面铺垫不说了,就是生成物浓度幂之积与反应物浓度幂之积的比值是一个常数)电离常数:弱电解质的电离达到平衡时溶液中所生成的各种离子浓度的乘积跟溶液中未电离的分子浓度的比是一个常数。水的离子积常数:在一定温度下,氢离子浓度与氢氧根离子浓度乘积是一个常数。溶度积:在一定条件下,难溶物质的饱和溶液中,存在沉淀溶解平衡,这个平衡常数就叫做溶度积。只用电解的阴阳离子乘积,就可以,如果电离出2个阴离子,记得是阴离子整体的平方。(实在不好打,不太明白的话,看一下教材)以上均与温度有关。

157、考试重点:稀释某种溶液并不是所有离子的浓度都减少。如稀释酸性溶液时,氢氧根离子浓度增大,稀释碱性溶液时,氢离子浓度增大。

158、越稀越电离。

159、c(H+)·c(OH-)=K(W),其中K(W)称作水的离子积常数,简称水的离子积;c(H+)和c(OH-)是分别是指整个溶液中氢离子和氢氧根离子的总物质的量浓度。

17

160、酸、碱抑制水的电离,能水解的盐促进水的电离。(闫水杰消耗水电离的氢离子或氢氧根所以是促进水的电离)

161、氢离子浓度大于氢氧根离子浓度是酸性溶液的必要条件,用PH判断需要有前提条件为25摄氏度。

162、酸越弱,对应的碱性越强。醋酸大于碳酸大于苯酚大于碳酸氢根(记住碳酸对应的盐是碳酸氢钠,碳酸氢根对应的盐是碳酸钠,因为:碳酸一级电离生成碳酸氢根离子和氢离子)(全国高考原题的知识点)

163、水解反应是微弱的,可逆的,吸热反应。(勒夏特列原理就可以应用了,必须记住,准确,升高温度平衡会向着的吸热方向进行)

164、完全双水解:(记住几个常用的,也是判断力子共存问题要考虑的)

Al3 +与HCO3–、CO32–、HS-、S2-、ClO-、AlO2-;

Fe3+与HCO3–、CO32–、ClO-、AlO2-;

Fe2+与AlO2-;

NH4+与SiO32-等。(考试中经常出的是铝离子和硫离子,记住双水解,就是一个夺取水中的氢离子,一个夺取水中的氢氧根离子)

165、硫酸氢钠。这是强酸的酸式盐,只电离,不水解。

NaHSO4的电离:NaHSO4=Na+ H+ +SO4(2-)(溶液中)

NaHSO4=Na+HSO4- (熔融)高考题出过选择题,要知道硫酸氢钠水溶液显酸性。

166、盐类水解的应用:

(1)配置氯化铁溶液,加入一定量的盐酸防止水解(方程式会写吗,就是铁离子夺取水中的氢氧根离子,生成氢氧化铁胶体(非沉淀),或直接溶解在浓盐酸中再加水稀释。

(2)镁条放入氯化铵、氯化铜、氯化铁溶液中产生氢气。为什么因为铵根离子,铜离子,铁离子,水解夺取水中的氢氧根离子,有氢离子产生,溶液显酸性。

(3)制备氢氧化铁胶体:废水中滴加饱和氯化铁溶液(并继续煮沸,就是水解是吸热反应,升高温度平衡会向着吸热反应方向进行,也就是生成氢氧化铁胶体方向)

(4)明矾、三氯化铁净水,铝离子和铁离子水解生成氢氧化铝胶体和氢氧化铁胶体。

(5)苏打可以洗涤去油污:苏打是碳酸钠,碳酸根水解生成碳酸氢根和氢氧根离子,加热,促进水解,碱性增强,去油污能力增强。

(6)泡沫灭火器的原理:硫酸铝和碳酸氢钠,双水解的应用。

(7)某些挥发性酸的盐溶液加热蒸干的产物:氯化铁、氯化铝、氯化铜,加热蒸干得不到原物质。氯化铁蒸干灼烧得到三氧化二铁。氯化铝得到三氧化二氯,氯化铜得到氧化铜。不挥发的盐溶液:硫酸铝、碳酸钠,加热得到原物质,因为硫酸、氢氧化钠不挥发,不可能得到氢氧化铝和氢氧化钠。

167、蒸干盐溶液所得物质的判断:

(1)先考虑分解:碳酸氢钠、碳酸氢钙。蒸干得到碳酸钠和碳酸钙

(2)考虑氧化还原反应:加热蒸干亚硫酸钠溶液得到硫酸钠,硫酸亚铁得到硫酸铁。

(3)盐溶液水解生成难挥发性酸时,一般得到原物质。如硫酸铜。盐类水解生成易挥发性酸时,蒸干一般得到对应氧化物,如氯化亚铁得到三氧化二铁。

(4)氯化铵、硫化铵溶液蒸干、灼烧无残留物。(盐类水解选择题会出,大题也会,让你写出水解方程式,记住常见的水解离子,反应方程式有水参与,生成氢离子或氢氧根离子,双水解五氢离子和氢氧根离子生成)

168、PH和为14的强酸强碱等体积混合,溶液呈中性。PH和为14的强酸和弱碱等体积混合,溶液呈碱性。(谁弱显谁性)

169、等体积等物质量浓度的一元强酸和一元弱碱混合,溶液呈酸性。(谁强显谁性)中和反应看物质的量,一元强酸和一元弱碱反应恰好生成强酸弱碱盐,显酸性。

170、常温时,0.1moll-的氢氧化钠溶液,由水电离出的氢离子和氢氧根离子为10-13mol,(解释,0.1moll-的氢氧化钠溶液中的氢氧根离子浓度为0.1moll-,所以氢离子浓度为10-13moll-,氢离子浓度为水电离的,且水电离的氢离子和氢氧根离子浓度相等。

18

171、PH=11的碳酸钠溶液中,由水电离的氢氧根为10-3moll-

172、PH=4的氯化铵溶液中,由水电离的氢离子浓度为10-4moll-

173、比较离子浓度大小,时刻记住电荷守恒、物料守恒和质子守恒。仔细阅读,看到不同等式特征想到不同守恒式子)以碳酸钠为例:电荷守恒:c(Na+)+c(H+)=2c(CO3^2-)+c(HCO3^-)+c(OH-)(考试注意考点在,碳酸根带两个电荷,故系数为2,常考点,童鞋们,如果看到选择题选项中等式两侧都是电荷的,一定要想到电荷守恒)物料守恒:c(Na+)是碳酸根离子物质的量的2倍,电离水解后,碳酸根以三种形式存在所以

c(Na+)=2[c(CO32-)+c(HCO3-)+c(H2CO3)]

(考试考点,整体倍数,2的位置放在碳元素整体外,还有如果发现选项中既有电荷又有分子,一定想到物料守恒)质子守恒:质子守恒可以用电荷守恒和物料守恒两个式子相减而得到(电荷守恒-物料守恒=质子守恒)。本人做题时都是用电荷和物料两个式子推出质子守恒,质子守恒给人最直观的的感觉就是看似不可能其实是对的,所以当看到这样的选项时,一定想到是质子守恒,需要我们准确写出电荷和物料,推出质子守恒)实质:(水电离出的c(H+)=c(OH-)在碳酸钠水溶液中水电离出的氢离子以(H+,HCO3-,H2CO3)三种形式存在,其中1mol碳酸分子中有2mol水电离出的氢离子所以c(OH-)=c(H+)+c(HCO3-)+2c(H2CO3))

174、离子浓度比较(1)酸溶液或碱溶液比如:硫化氢,第一步电离为:氢离子和硫氢根离子,硫氰根离子会继续电离,电离出氢离子和硫离子,以第一步电离为主。故离子浓度大小关系为:氢离子大于硫氢根离子大于大于硫离子大于氢氧根离子(2)盐溶液碳酸氢钠溶液中:Na+ >HCO3->OH->H+ (至于氢离子和碳酸根离子大小比较高中不涉及)同时注意溶液中其他离子对该离子的影响,比如比较物质量相同的各溶液中铵根离子浓度的大小硫酸氢铵大于氯化铵大于醋酸钠。混合溶液比较第一考虑是否发生反应,先要确定反应后的物质及各物质的浓度,再考虑电力因素、水解因素。

175、热化学方程式一般不写反应条件。即不必注明点燃、催化剂等反应条件。不必标注气体、沉淀物物质的符合上下箭头。

176、注意漏写或错写物质的状态,正负号与方程式的计量数不对应是书写方程式最易出现错误的。

177、反应热的计算:△H =生成物总能量-反应物的总能量△H =E1(反应物的键能总和)-E2(生成物的键能总和)例题分析:(2011重庆高考)SF6是一种优良的绝缘气体,分子结构中只存在S—F键,已知1mol S(s)转化为气态硫原子吸收能量280kJ,断裂1mol F—F、S—F键需要吸收的能量分别为160 kJ、330kJ,则S(s) + 3F2(g) = SF6(g)的反应热△H为

A.—1780kJ/mol B.—1220kJ/molC.—450kJ/mol D.+430kJ/mo△H=反应物断键吸收的总热量-生成物成键释放的总能量

=(280+160×3-330×6重点)kj/mol

=-1220KJ/mol

例题分析:(2010全国课标高考题)已知:HCN(aq)与NaOH(aq)反应的△H = -12.1kJ /mol;HCl(aq)与NaOH(aq)反应的△H =-55.6kJ/ mol。则HCN在水溶液中电离的△H等于( C )电离吸热

A.-67.7 kJ /mol B.-43.5kJ /mol C.+43.5 kJ/mol D.+67.7 kJ/ mol

178、转化率=△(变化的)/初始量

179、PH相同的①CH3COONa②NaHCO3③NaClO三种溶液的c(Na+):①>②>③(正确,2014全国课标二卷)分析首先我们知道,醋酸酸性大于碳酸大于次氯酸,酸越弱对应的碱性越强,由于PH值相同,故次氯酸钠浓度小于碳酸钠小于醋酸钠,即1.》2》3.,这个经常考。

180、(模拟题分析)25 ℃,某浓度的盐酸、氯化铵溶液中由水电离出的氢离子浓度分别为1.0×10-a mol·L-1、1.0×10-b mol·L-1,这两种溶液的pH之和为(A)

A.14-a+b B.14+a+b

C.14-a-b D.14+a-b

分析:盐酸中由水电离的氢离子浓度等于氢氧根浓度,通过例子积常数,求得溶液中氢离子浓度为1*1014+a mol·L-1,氯化铵中由水电离的氢离子浓度就是溶液中的氢离子浓度为1.0×10-b mol·L-1,所以和为14-a+b。

19

181、Ksp的数值越大,电解质在水中的溶解能力越强。

182、在水溶液中,只有羧基可电离出氢离子。

183、乙炔、乙烯可以使酸性高锰酸钾褪色。

184、点燃法能够鉴别甲烷和乙烯。

185、溴乙烷氢氧化钠的水溶液取代,氢氧化钠醇溶液消去。

186、检验卤代烃分子中的卤素原子:(1)取少量卤代烃(2)加入氢氧化钠溶液(3)加热煮沸或水浴加热(4)冷却(5)加入稀硝酸酸化(6)加入硝酸银(氯化银白色溴化银浅黄色碘化银黄色)

187、酚:根本特征就是羟基与苯环直接相连。

188、酚与芳香醇属于不同类别有机物,不属于同系物。(重点)

189、乙酸乙酯几个重点:

(1)加入顺序:先加乙醇,再加浓硫酸(加入碎瓷片以防暴沸),最后加乙酸(冰醋酸)。

(2)可逆反应

(3)长导管作用:导气兼冷凝。

(4)导气管不要伸到Na2CO3溶液中去,防止由于加热不均匀,造成Na2CO3溶液倒吸入加热反应物的试管中。

(5)饱和Na2CO3溶液的作用是:

(1)吸收乙醇(2)中和乙酸(3)降低乙酸乙酯的溶解度(碳酸钠的溶解度大于碳酸氢钠,所以不用碳酸氢钠)(6)浓硫酸作用:催化剂和吸水剂

190、银镜反应需要你水浴加热。

20

191、有机大题答题注意事项:分子式、结构式、结构简式。

192、通常有几种氢原子,就有几组不同的吸收峰。

193、结晶所得的物质纯度不符合要求,需要重新加入一定溶剂进行溶解、蒸发和再结晶,这个过程称为重结晶。

194、有机大题:碰到官能团是醛基,检验试剂:银氨溶液(或新制氢氧化铜悬浊液),现象是试管壁附着光亮的银(或出现砖红色沉淀)(做了两道有机大题,碰见两次这个点,一定答的准确哦)

195、说一说大题答题技巧:就个人而言,大题我是力争满分,但是几乎每次很少得到满分。那平时如何训练,就是能拿分的绝不丢分,所以在答大题时,认认真真把答案写在卷子上,然后对照答案,第一:勤动手。决不允许只看不写,因为在书写过程中,你会丢三落四,方程式会写,可能忘记标气体沉淀符号,写分子式你写的结构简式,写化学名称你写的化学式、电解池电极为阴阳极无正负极,电源、原电池才是正负极等等,所以注意平时训练,每次按照高考题做,看看自己究竟能得到几分,一般前几个小题认真做都可以拿满分,对于计算的和更复杂的,如果第一眼不会,我们可以略过去,等有时间在回来做,如果没时间,我们可以选择放弃,至少这个大题一多半的分都拿到了,何必纠结一个空或者两个空呢?这是我在平时让学生练习时发现与总结的。第二:多背多总结如检验气密性(碰到这样的题,总结答题话术,就是如:把导管放入盛有水的水槽中,微热烧瓶口,导管口有气泡冒出,撤去酒精灯,水沿导管上升形成一段水柱,说明气密性良好)并不是检验气密性都这么做,但是大部分情况是这样,我们要记住微热,水柱,这些答题要全面与准确。还有刚才说的银氨溶液。

196、醇羟基,酚羟基,羧基,苯酚上邻间对上有单独X(CL.Br.)可水解再与钠反应。氢氧化钠与酚羟基、羧基反应。碳酸钠与酚羟基、羧基反应。碳酸氢钠与羧基反应。

197、臭鸡蛋气味的气体硫化氢。

198、连续氧化总结:无机推断突破口硫——二氧化硫——三氧化硫(溶于水硫酸)氮气———氧化氮—二氧化氮(溶于水硝酸)氨气——一氧化氮——二氧化氮(溶于水硝酸)钠——氧化钠——过氧化钠(溶于水氢氧化钠)碳——一氧化碳——二氧化碳(溶于水碳酸)硫化氢——二氧化硫——三氧化硫(溶于水硫酸)

2H2S+3O2=点燃=2H2O+2SO2(O2过量)

2H2S+O2=点燃=2H2O+2S(O2不足)硫化亚铁——二氧化硫——三氧化硫(溶于水硫酸)考试有时候会忘记硫化氢这种气体的连续氧化。(考题出过)

199、显色反应:苯酚遇氯化铁溶液显紫色,淀粉遇碘单质显蓝色,某些蛋白质遇浓硝酸显黄色,都属于有机物的显色反应

200、区分聚合度,链节、和单体。

21

201、鉴别葡萄糖溶液和淀粉胶体的最简便的方法是( C )

A.电泳 B.渗析 C.丁达尔现象 D.布朗运动淀粉胶体不具备电泳现象。

202、一般取出的药品不能再放回原(试剂瓶),但剩下的钠、钾应立即放回原试剂瓶。

203、白磷应在水中切割。

204、测溶液PH时,PH试纸不能先湿润,因为这相当于将原溶液稀释。

209、氢氧化钡足量

2Ba(OH)2+KAl(SO4)2==2BaSO4↓+KAlO2+2H2O

离子方程式:2Ba2+ +4OH- +Al3++2SO42-===2BaSO4↓+AlO2- +2H2O氢氧化钡少量

3Ba(OH)2+2KAL(SO4)2=2AL(OH)3↓+3BaSO4↓+K2SO4

离子方程式:3Ba2+ +6OH- +2Al3++3SO42-===2Al(OH)3↓+3BaSO4↓

210、常温下,向100ml3mol/L的NAOH溶液中通入标准状况下下硫化氢气体4.48L,充分反应后得到稳定溶液,求反应后溶液中的生成物的种类及物质的量浓度。

n(H2S)=4.48/22.4=0.2mol n(NaOH)=3*0.1=0.3mol

开始时:H2S+NaOH==2NaHS+H2O

0.2mol H2S与0.2mol NaOH反应,还剩余0.1mol NaOH然后是:NaHS+NaOH==Na2S+H2O

0.1mol NaOH与0.1mol NaHS反应,生成0.1mol Na2S,还剩余0.1mol NaHS 所以生成物的种类是0.1mol Na2S和0.1molNaHS

c(Na2S)=0.1/0.1=1mol/L c(NaHS)=0.1/0.1=1mol/L

22

211、浓度相同体积相同醋酸和醋酸钠溶液混合之后,醋酸+醋酸根=2*钠离子这种物料守恒。(这种情况还会以很多情况给出,分析后,再做出正确选择,以后碰到这种二倍的关系的,不要认为一定是错误的)

211、浓度相同体积相同醋酸和醋酸钠溶液混合之后,醋酸+醋酸根=2*钠离子这种物料守恒。(这种情况还会以很多情况给出,分析后,再做出正确选择,以后碰到这种二倍的关系的,不要认为一定是错误的)例题分析(96年高考题)在物质的浓度均为0.01 mol / L的CH3COOH和CH3COONa的混合液中,测得c(CH3COO-)>c(Na+),则下列关系式正确的是(AD)

A. c(H+)>c(OH-} B. c(H+)<c(OH-)

C. c(CH3COOH)>c(CH3COO-) D.c(CH3COOH)+c(CH3COO-)=0.02 mol /L解析:由电荷守恒,由电荷守恒可知c(OH-)+c(CH3COO-)=c(H+)+c(Na+),题中已知条件,(CH3COO-)>c(Na+),则c(OH-)<c(H+),故A正确;

B.由A的分析可知,c(OH-)<c(H+),故B错误;

C.醋酸的电离程度大于醋酸根离子的水解,则c(CH3COOH)<c(CH3COO-),故C错误;

D.物质的量浓度均为0.01mol/L的CH3COOH和CH3COONa混合溶液,由物料守恒可知,c(CH3COOH)+c(CH3COO-)=0.02mol/L,故D正确;

212、等体积、等物质量浓度的醋酸和醋酸钠混合,醋酸的电离程度大于醋酸根水解的程度,溶液呈酸性。

213、等体积、等物质量浓度的氯化铵和氨水混合溶液中,氨水的电离大于铵根的水解,溶液呈碱性。例题分析:现有浓度均为0.1mol/L三种溶液:①CH3COOH、②NaOH、③CH3COONa,下列说确的是(C)

A.溶液①中,c(CH3COO-)=c(H+)

B.溶液①、②等体积混合,混合液中c(CH3COO-)等于溶液③中的c(CH3COO- )

C.溶液①、②等体积混合,混合液中c(CH3COO-)+c(CH3COOH)=c(Na+)

D.溶液①、③等体积混合,混合液中c(Na+)>c(CH3COO-)>c(H+)>c(OH-)

试题分析:

A、醋酸是弱电解质,电荷守恒为c(H+)=c(OH-)+c(CH3COO-)故A不正确;

B、①和②等体积混合时,二者恰好反应生成醋酸钠,其中醋酸钠的浓度是0.1mol/L÷2=0.05mol/L,而③中醋酸钠的浓度是0.1mol/L,所以混合液中c(CH3COO-)小于溶液③中的c(CH3COO-),故B错误;

C、①和②等体积混合时,可理解为物料守恒。

D、等物质的量浓度的醋酸和醋酸钠溶液混合,醋酸电离程度大于醋酸根水解程度,导致混合溶液呈酸性,所以c(H+)>c(OH-),溶液中存在电荷守恒c(Na+)+c(H+)=c(OH-)+c(CH3COO-),所以得c(CH3COO-)>c(Na+),故D错误;故选C。

214、0.2mol/L的醋酸溶液与0.1mol/L的氢氧化钠溶液等体积混合后:

2c(H+)- 2c(oh-)=c(ch3coo-)- c(ch3cooh))是正确的

2c(Na+)=c(ch3cooh)+c(ch3coo-):物料守恒

c(Na+)+c(H+)=c(ch3coo-)+c(oh-):电荷守恒二者联合:c(ch3coo-)+2c(oh-)=c(ch3cooh)+2c(H+)移向得出正确答案。(熟悉电荷守恒、物料守恒和质子守恒)

216、将0.02mol/L CH3COOH溶液和0.01mol/L NaOH溶液以等体积混合,混合溶液中粒子浓度关系正确的(AD ) (非常重要的高考题)

A:C(CH3COO-)>C(Na+)

B:C(CH3COOH)>C(CH3COO-)

C:2C(H+)=C(CH3COO-)-C(CH3COOH)

D:C(CH3COOH)+C(CH3COO-)=0.02mol/L

解析:二者混合发生反应,混合溶液是0.01mol/lCH3COONa和0.1mol/lCH3COOH,依据我们上午的知识点,电离为主导,水解次要,即显酸性,氢离子浓度大于氢氧根浓度,根据电荷守恒,A正确,.D物料守恒。

217、在水溶液中,只有羧基可电离出氢离子。

218、制备氯气,常混有氯化氢气体,除杂用饱和食盐水,然后浓硫酸干燥。

220、氯仿:三氯甲烷。

23

221、乙烯:是衡量一个国家石油化工发展水平的标志。

222、苯酚在空气中放置一段时间略显粉红色。

223、苯酚遇氯化铁显紫色。

224、除去苯中混有的苯酚,加入氢氧化钠溶液,充分振荡后分液。

225、苯酚与碳酸钠反应生成碳酸氢钠和苯酚钠。

226、苯酚钠与二氧化碳(过量或者是少量)只生成碳酸氢钠和苯酚。

227、苯酚与溴水反应生成三溴苯酚白色沉淀和溴化氢。

228、苯酚与溴水反应,苯与液溴反应。

229、水浴加热:高中涉及的所有需要水浴加热的实验:

1、苯的硝化反应:50-60摄氏度水浴

2、所有的银镜反应:温水浴

3、酚醛树脂的制取:沸水浴(100摄氏度)

4、乙酸乙酯的水解:70-80摄氏度水浴

5、蔗糖的水解:热水浴

6、纤维素的水解:热水浴

7、溶解度的测定

230、(1)下列实验中,需要用水浴加热的是(2、6)(填序号)①新制Cu(OH)2与乙醛反应; ②银镜反应; ③溴乙烷的水解; ④由乙醇制乙烯;⑤乙酸和乙醇反应制乙酸乙酯; ⑥乙酸乙酯的水解.

24

231、高锰酸根在强酸性条件下被还原成锰离子,在弱酸性、中性至中度碱性时得到二氧化锰,在强碱性时得到锰酸根(锰酸根离子MnO42-)。(一般情况下)

232、芳香烃只有C,H两元素组成,而芳香族化合物则除了这两元素之外,还有其他元素,如:S、O、N等。(2014福建有机高考大题)。

233、植物油是脂肪酸的甘油酯,酯水解得到甘油、脂肪酸。(2011广东高考知识点)

234、有机主线:性质——结构——官能团。

234、有机主线:性质——结构——官能团。

235、乙醛、乙醇都能被酸性高锰酸钾氧化成乙酸,故都能褪色。

235、乙醛、乙醇都能被酸性高锰酸钾氧化成乙酸,故都能褪色。

236、缩聚反应:缩聚物结构式要在括号外侧写出链节余下的端基原子或原子团(这与加聚物不同,加聚物端基不确定,通常用—表示)

237、缩聚反应:由一种单体缩聚时,生成小分子的物质的量为n-1(一般指水)由两种单体缩聚时,生成小分子的物质的量为(2n-1)

238、顺反异构:立体异构的一种,由于双键不能自由旋转引起的,一般指烯烃的双键顺式异构体:两个相同原子或基团在双键同一侧的为顺式异构体。反式异构体:两个相同原子或基团分别在双键两侧的为反式异构体。顺反异构体产生的条件:⑴分子不能自由旋转(否则将变成另外一种分子);⑵双键上同一碳上不能有相同的基团;

239、四氯化碳的用途:萃取剂、灭火剂,有机溶剂。

240、有机官能团的引入:引入羟基:1、乙烯和水加成2、醛、酮加氢3、卤代烃水解4、酯类水解(稀硫酸的条件)

25

241、卤素的引入:

1、烃与卤素的反应(甲烷、苯)2、不饱和烃与卤素单质或者是卤素氢化物3、醇与卤素氢化物取代

242、醇的消去或卤代烃的消去,引入碳碳双键。

243、乙醇氧化:引入碳氧双键

239、乙醇与氢溴酸发生取代反应。生成溴乙烷和水,溴乙烷在氢氧化钠水溶液生成乙醇,氢氧化钠醇溶液生成乙烯。(脑海中这种类似的转换关系必须清晰)

240、甲苯与氯气取代(光照条件取代甲基上的氢原子,铁做催化剂取代甲苯上的邻或对位。(考试经常出)至于是邻位还是对位,看题中的提示信息。

241、硫酸铵加入蛋白质是盐析,硫酸铜假如蛋白质是变性。(硫酸铜是重金属盐溶液)

242、油脂不是高分子化合物。

243、蔗糖不含有醛基,不具有还原性,麦芽糖具有醛基。

244、甲烷与氯气取代反应现象:黄绿色气体逐渐退去,产生少量白雾,并在试管内壁上出现了油状液滴,试管内的液面逐渐上升,最后充满整个试管。

245、缩聚反应官能团:(1)-COOH与-OH,缩聚生成聚酯(2)-COOH与-NH2,缩聚形成肽键(3)苯酚与甲醛的缩聚,生成酚醛树脂。

246、2009四川高考考点:能发生银镜反应的物质一定含有醛基,但是不一定是醛类物质,比如:甲酸、甲酸甲酯,葡萄糖。

247、分液时,将上层液体由上口到出。(正确)

248、2013年福建高考题:检验铵根离子时,往试样中加入氢氧化钠溶液,微热,用湿润的蓝色石蕊试纸检验逸出的气体。(错误,应该用红色石蕊试纸)解释:石蕊试纸有红色和蓝色两种红色用来检验碱性物质,蓝色用来检验酸性物质,而且石蕊试纸用来检验浓硫酸,次氯酸等是不行的浓硫酸腐蚀石蕊试纸,使它变黑色次氯酸有强氧化性使它变回无色。

249、溴苯密度比水大。(用水就可以区分苯和溴苯)

250、(2013江苏高考题)下列依据相关实验得出的结论正确的是(D)

A.向某溶液中加入稀盐酸,产生的气体通入澄清石灰水,石灰水变浑浊,该溶液一定是碳酸盐溶液

B.用铂丝蘸取少量某溶液进行焰色反应,火焰呈黄色,该溶液一定是钠盐溶液

C.将某气体通入溴水中,溴水颜色褪去,该气体一定是乙烯

D.向某溶液中滴加KSCN 溶液,溶液不变色,滴加氯水后溶液显红色,该溶液中一定含Fe2+ 解析:A、向某溶液中加入稀盐酸,产生的气体通入澄清石灰水,石灰水变浑浊,该溶液可能是碳酸盐溶液或亚硫酸盐溶液或者是亚硫酸根,故A错误;

B、用铂丝蘸取少量某溶液进行焰色反应,火焰呈黄色,不一定是钾盐也可能是氢氧化钠,钾元素的焰色反应若不用钴玻璃也会发出黄色火焰,该溶液不一定是钠盐溶液,故B错误;

C、将某气体通入溴水中,溴水颜色褪去,通入的气体只要是还原性气体或能发生加成的有机气体都可以使溴水褪色,如二氧化硫、硫化氢、丙烯等,该气体不一定是乙烯,故C错误;

D、向某溶液中滴加KSCN 溶液,溶液不变色,说明不含铁离子,滴加氯水后溶液显红色,氯气氧化亚铁离子为铁离子,遇到硫氰酸钾溶液生成血红色溶液证明该溶液中一定含Fe2+,故D正确;故选D.题不难,但都是易错点。

26

251、检验碳酸根的方法(话术):取样,加入稀盐酸,将产生的气体通入澄清的石灰水,溶液变浑浊,说明含有碳酸根。(将题答完美与完整)

257、书写同分异构体:考虑碳链异构、位置异构和官能团异构。

258官能团氨基会与盐酸反应:H2N-CH2COOH+HCL→COOH-CH2NH3CL

259、酯类碱性条件下生成盐与醇。

260、考试答题时,题中问的是官能团还是含氧官能团。(相信童鞋们题会做,就是审题不认真)

27

261、聚乙烯可以发生加成反应。(错误)2010福建高考题,聚乙烯中碳碳直接以单键相连,不能发生加成反应。

262、石油是没有干馏的,煤炭是没有分馏的。石油分馏产物为汽油、没有等。2010福建高考题

263、蛋白质水解到多肽,多肽水解氨基酸。(所以蛋白质水解的最终产物为氨基酸。)

264、蛋白质具有胶条的性质。

265、蛋白质中含有氨基和羧基,故有两性,能与酸、碱反应生成盐。

266、石油裂解和油脂皂化都是高分子生成小分子的过程。(都是大分子生成小分子过程)

267、石油裂解:深度裂化,提供有机化工原料。乙烯、丙烯、异丁烯等。

268、裂化:提高轻质油特别是汽油的产量和质量。

270、只有羧基与碳酸氢钠反应。

28

271、蔗糖、麦芽糖的分子式相同,二者互为同分异构体。(区分淀粉和纤维素)

272、蔗糖不是有机高分子化合物。

273、酯类物质,在碱性条件水解生成对应的盐和醇,但是生成的醇若是羟基直接连载苯环上,记住也要与氢氧化钠反应。(经常忘记,尤其在判断能与几摩尔氢氧化钠反应的时候出错)

277、苯不能使溴的四氯化碳溶液褪色。

278、原子共平面:甲烷型:正四面体结构,4个C—H健不在同一平面上;凡是碳原子与4个原子形成4个共价键时,空间结构都是正四面体结构以及烷烃的空间构型;5个原子中最多有3个原子共平面。

279、常见共价键数目(特殊物质):白磷:

31g白磷所含共价键为1.5NA。白磷的分子式是P4,其中含有6个共价键;(正四面体结构)所以共价键数量=31/(31*4)*6=1.5石墨:

1摩尔石墨含有1.5摩尔共价键。石墨,1个C,提供3个电子成键,形成1.5个共价键,1摩尔石墨有1.5mol金刚石:

1摩尔金刚石含有2摩尔共价键金刚石是原子晶体,关于原子晶体中原子和键的关系必须使用均摊法因为一个碳上连了四个键,而每个键被2个碳平分所以碳和键的比是1:2二氧化硅:

1molSiO2有4mol。

Si原子有4个价电子,与4个氧原子形成4个Si-O单键,O原子用2个价电子与2个Si原子形成2个Si-O单键。每mol二氧化硅有1molSi原子和2molO原子,共拿出8mol价电子,2个价电子成一个单键,共4molSi-O键。

278、晶体溶沸点判断:

(1)一般情况下,熔沸点原子晶体>离子晶体>分子晶体。(2)离子晶体、原子晶体、金属晶体,熔点与构成微粒的半径大小成反比,即半径越小,熔点越高。(3)分子晶体的熔点与其相对原子质量成正比。相对原子质量大,熔点越高。

278、碱性氧化物都是金属氧化物,但金属氧化物不一定都是碱性氧化物,比如四氧化三铁。它是一种特殊的氧化物。

279、人体中的铁为二价铁,不是三价铁。

280、铁红:三氧化二铁。磁性氧化铁为四氧化三铁。

29

281、常温下,溴为液态。卤素三态全有。

282、温室效应:二氧化碳

283、赤潮:氮、磷(发生海水中)

284、水华:同赤潮(发生淡水中)

285、光化学烟雾:氮的氧化物(淡蓝色)

286、酸雨:二氧化硫

287、臭氧空洞:氟氯烃

288、水俣病:甲基汞

289、如何鉴别二氧化氮和溴单质,通过加压的方法,颜色加深对的为溴单质,颜色先加深后变浅的为二氧化氮,因为存在二氧化氮和四氧化二氮的转化。

290、式量为28的物质有:一氧化碳、乙烯、氮气。

30

291、将足量co2通入下列各溶液中,

所含离子还能大量共存的是:(2011年全国高考题)H + 、NH4 + 、Al 3+ 、SO4 2-解析:全部都可以啊!这个是溶液是酸性环境,H+ NH4+ AL3+ 都是酸性,CO2也是酸性气体,

因此全部可以共存二氧化碳通入后不产生碳酸根哦。

CO32- +2H+===H2O +CO2↑331、

双水解Al3+ + 3AlO2- + 6H2O =

4Al(OH)3↓Al3+ + 3HCO3- =

Al(OH)3↓ +3CO2↑2Al3+ + 3CO32- + 3H2O =

2Al(OH)3↓ + 3CO2↑(区分330这个题)

292、下列实验操作中错误的是( c )

A.分液时,分液漏斗中下层液体从下口放出,上层液体从上口倒出(参考250考点)

B.蒸馏时,应使温度计水银球靠近蒸馏烧瓶支管口

C.量取时,液体倒出后用蒸馏水洗涤量筒,并将洗涤液转移入容量瓶

D.称量时,称量物放在称量纸上,置于托盘天平的左盘,砝码放在托盘天平的右盘中 解析:A.分液操作时,分液漏斗中下层液体从下口放出,上层液体从上口倒出,一避免两种液体相互污染,故A正确;

B.蒸馏操作时,需要将温度计水银球插入到支管口处,故B正确;

C.量筒量取后是不能将洗涤液注入容量瓶中,否则,结果偏高,故C错误;

D.称量时左物右码,并放在称量纸上,故D正确.故选C.

293、蒸馏操作中温度计测定是气体的温度,所以温度计水银球应位于蒸馏烧瓶支管口处。343、分液操作中,待下层液体流出后,再将上层液体从分液漏斗下口放出。(错误。上层液体应从上口倒出)

294、三价铁离子检验:用KSCN溶液检验,如果出现血红色,说明原溶液中有三价铁。第二,可以采用加入氢氧化钠溶液,有红褐色沉淀生成;也可以加苯酚溶液显紫色。

295.离子方程式书写考点:(弱酸、弱碱、沉淀、非离子化合物均不拆开)书写离子方程式不能拆的物质有:单质、氧化物、难溶于水的物质、难电离的物质另外当出现微溶物时要分类讨论当微溶物出现在生成物时写化学式(不拆)当微溶物出现在反应物时也要分情况:①如果是澄清溶液时应拆写成离子形式(如澄清石灰水)②如果是浊液时应写化学式(不拆)(如石灰乳浊液)

296、氢氧化铝是两性氧化物,可以和强酸强碱反应,一般不溶于弱酸弱碱,如碳酸、氨水等。(高考题中经常考的氢氧化铝溶于过量的氨水,沉淀不溶解,没有偏铝酸根生成)

297、铝热反应原理可以应用在生产上,例如焊接钢轨等。

298、铝热剂是把铝粉和氧化铁粉末按一定比例配成的混合物。

299、芒硝,十水硫酸钠的俗称。

300、下列物质不属于天然有机高分子化合物的是( C )

A.淀粉 B.纤维素C.聚氯乙烯 D.蛋白质 361、常温常压下,22.4L co2 气体中所含分子数大于NA。(错误)

解析:热胀冷缩,20度(常温)气体体积比它在0度时候大,所以其0度时候一定小于22.4L,所含分子应该小于NA。362、常温常压下,22.4L的NO气体分子数小于NA 。

(正确)解析:22.4说的是标况,常温高于标况的0度,气体热胀冷缩,等体积内的分子数不就少。363、标准状态下 22.4l三氧化硫所含分子数目大于NA 。(正确) 只要记住22.4l必须是标况气体就可以认真审题

热门推荐